Clase 12 Soluciones RD Sharma – Capítulo 19 Integrales indefinidas – Ejercicio 19.26 | conjunto 2

Evalúa las siguientes integrales.

Pregunta 11. ∫e x (sen4x-4)/(2sen 2 2x)dx

Solución: 

Tenemos,

 ∫e x (sen4x-4)/(2sen 2 2x)dx

=∫e x (2sen2xcos2x-4)/(2sen 2 2x)dx

=∫e x (((2sen2xcos2x)/(2sen 2 2x))-4/(2sen 2 2x))dx

=∫e x (cot2x-2cosec 2 2x)dx

=∫e x cot2xdx-2∫e x cosec 2 2xdx

Integrando por partes,

e x cot2x-2∫e x d(cot2x)/dx-2∫e x cosec 2 2xdx 

= e x cot2x+2∫e x cosec 2 2xdx-2∫e x cosec 2 2xdx

= e x cot2x+C

Pregunta 12. ∫e x (2-x)/(1-x) 2 dx

Tenemos,

∫e x (2-x)/(1-x) 2 dx

=∫e x ((1-x)+1)/(1-x) 2 dx

=∫e x (((1/(1-x))+(1/(1-x) 2 )))dx

=∫e x (1/(1-x))+∫e x (1/(1-x) 2 )dx

= e x /(1-x)+C

Pregunta 13. ∫e x (1+x)/(x+2) 2 dx

Tenemos,

∫e x (1+x)/(x+2) 2 dx

=∫e x ((2+x)-1)/(x+2) 2 dx

=∫e x (((2+x)/(x+2) 2 )-1/(x+2) 2 )dx

=∫e x ((1/(x+2))-1/(x+2) 2 )dx

= e x /(x+2)dx

Pregunta 14. ∫e (-x/2) (1-senx) (1/2) /(1+cosx)dx

Tenemos,

∫e (-x/2) (1-senx) (1/2) /(1+cosx)dx

Sea x/2 = t

Entonces, x = 2t

Entonces la ecuación es,

∫2e (-t) (1-sen2t) (1/2) /(1+cos2t)dt

=2∫e (-t) (sen 2 t+cos 2 t-2sintcoste) (1/2) /(2cos 2 (t))dt

=∫e (-t) (sint-coste) (2*1/2) /cos 2 tdt

=∫e (-t) (sint-coste)/cos 2 tdt

=∫e (-t) (tantsect-sect)dt

=∫e (-t) (tant sect)dt-∫e (-t) sectdt

=∫e (-t) (tant secta)dt -e (-t) secta -∫e (-t) (d(secta)/dt) dt

=∫e (-t) (tant secta)dt -e (-t) secta -∫e (-t) secta tantdt

= e (-t) secta

= e (-x/2) seg(x/2)+C

Pregunta 15. ∫e x (logx +1/x)dx

Solución:

Tenemos,

∫e x (logx +1/x)dx

= e x (logx)+C

Pregunta 16. ∫e x (logx+1/x 2 )dx

Solución:

Tenemos,

∫e x (logx +1/x 2 )dx

=∫e x (logx+1/x-1/x+1/x 2 )dx

=∫e x ((logx-1/x)+((1/x)+(1/x 2 ))dx

= e x (logx-1/x)+C

Pregunta 17. ∫e x /x(x(logx) 2 +2logx)dx

Solución:

Tenemos,

∫e x /x(x(logx) 2 +2logx)dx

=∫e x ((logx) 2 +2e x (logx)/x)dx

=∫e x (logx)2dx +∫(2e x /x)(logx)dx

Integrando por partes,

= e x (logx) 2 -∫e x (d(logx) 2 /dx)dx +∫(2e x /x)(logx)dx

= e x (logx) 2 -∫(ex / x )2logxdx+∫2e x /x(logx)dx

= e x (logx) 2 +C

Pregunta 18. ∫e x (sen -1 x+1/(1-x 2 ) 1/2 )dx

Solución:

= e x sen -1 x-∫e x (d(sen -1 x)/dx) dx +∫e x /(1-x 2 ) 1/2 dx

= e x sen -1 x- ∫e x /(1-x 2 ) 1/2 dx+∫e x /(1-x 2 ) 1/2 dx

= e x sen -1 x+C

Pregunta 19. ∫e 2x (-senx +2cosx)dx

Solución:

= -∫e 2x senxdx +2∫e 2x cosxdx

= -∫e 2x senxdx+2((1/2)e 2x cosx+∫(1/2)e 2x senxdx)

= -∫e 2x senxdx+e 2x cosx+∫e 2x senxdx

= e 2x cosx+C

Pregunta 20. ∫e x (tan -1 x+1/(1+x 2 ))dx

Solución:

= e x tan -1 x-∫e x (d(tan -1 x)/dx) dx+∫e x /(1+x 2 )dx

= e x tan -1 x-∫e x /(1+x 2 )dx+∫e x /(1+x 2 )dx

= e x tan -1 x+C

Pregunta 21. ∫e x ((senxcosx-1)/sen 2 x)dx

Solución:

= ∫e x (cotx-cosec 2 x)dx

= e x cotx-∫e x (d(cotx)/dx) dx-∫e x cosec 2 xdx

= e x cotx+∫e x cosec 2 xdx -∫e x cosec 2 xdx

= e x cotx+C

Pregunta 22. ∫(tan(logx)+sec 2 (logx))dx

Solución:

Suponer,

logx=z

=>e z =x

=>d(e z )/dx=1

=>e z dz=dx

Sustituyéndolo en la pregunta original,

∫(tan z+sec 2 z)e z dz

= e z tanz -∫e z (d(tanz)/dz))dz+∫e z sec 2 zdz

= e z tanz-∫e z sec 2 zdz+∫e z sec 2 zdz

= e z tanz+C

= e (logx) tan(logx)+C

= x tan(logx)+C

Pregunta 23. ∫e x (x-4)/(x-2) 3 dx

Solución:

= ∫e x ((x-2)-2)/(x-2) 3 dx

= ∫e x ((1/(x-2) 2 )-(2/(x-2) 3 ))dx

= e x /(x-2) 2 -∫e x (d((x-2) -2 )/dx)dx-2∫e x /(x-2) 3 dx

= e x /(x-2) 2 +2∫e x /(x-2) 3 dx -2∫e x /(x-2) 3 dx

= e x /(x-2) 2 +C

Pregunta 24. ∫e 2x ((1-sen2x)/(1-2cosx))dx

Solución:

=∫e 2x ((1-sen2x)/2sen 2 x)dx

=∫e 2x ((cosec 2 x/2)-cotx)dx

Suponer,

yo = yo 1 + yo 2

I 1 =1/2∫e 2x cosec 2 xdx

yo 2 =-∫e 2x cotxdx

dejar,

tu=e 2x

=du=2e 2x dx

y

∫cosec2xdx=∫dv

=>v=-cotx+C

Asi que,

I 1 =1/2[e 2x (-cotx)-∫(-cotx)2e 2x dx]

I 1 =1/2(e 2x (-cotx))+∫cotxe 2x dx

De este modo,

I=(1/2)(e 2x (-cotx))+∫cotxe 2x dx -∫e 2x cotx dx

=>I=(1/2)(e 2x (-cotx))+C

Publicación traducida automáticamente

Artículo escrito por neeraj kumar 13 y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *