Resolver los siguientes sistemas de ecuaciones lineales homogéneas por método matricial:
Pregunta 1.
2x – y + z = 0
3x + 2y – z = 0
x + 4y + 3z = 0
Solución:
Dado
2x – y + z = 0
3x + 2y – z = 0
X + 4y + 3z = 0
El sistema se puede escribir como
hacha = 0
Ahora, |A| = 2(6 + 4) + 1(9 + 1) + 1(12 – 2)
|A| = 2(10) + 10 + 10
|A| = 40 ≠ 0
Como |A|≠ 0, x = y = z = 0 es la única solución de esta ecuación homogénea.
Pregunta 2.
2x – y + 2z = 0
5x + 3y – z = 0
X + 5y – 5z = 0
Solución:
Dado 2x – y + 2z = 0
5x + 3y – z = 0
X + 5y – 5z = 0
hacha = 0
Ahora, |A| = 2(– 15 + 5) + 1(– 25 + 1) + 2(25 – 3)
|A| = – 20 – 24 + 44
|A| = 0
Por lo tanto, el sistema tiene infinitas soluciones.
Sea z = k
2x – y = – 2k
5x + 3y = k
Pregunta 3.
3x – y + 2z = 0
4x + 3y + 3z = 0
5x + 7y + 4z = 0
Solución:
Dado:
3x – y + 2z = 0
4x + 3y + 3z = 0
5x + 7y + 4z = 0
hacha = 0
Ahora, |A| = 3(12 – 21) + 1(16 – 15) + 2(28 – 15)
|A| = – 27 + 1 + 26
|A| = 0
Por lo tanto, el sistema tiene infinitas soluciones.
Sea z = k
3x – y = – 2k
4x + 3y = – 3k
Pregunta 4.
x + y – 6z = 0
x – y + 2z = 0
– 3x + y + 2z = 0
Solución:
Dado:
x + y – 6z = 0
x – y + 2z = 0
– 3x + y + 2z = 0
hacha = 0
Ahora, |A| = 1(– 2 – 2) – 1(2 + 6) – 6(1 – 3)
|A| = – 4 – 8 + 12
|A| = 0
Por lo tanto, el sistema tiene infinitas soluciones.
Sea z = k
x + y = 6k
x – y = – 2k
Pregunta 5. Resolver el sistema de ecuaciones lineales homogéneas por método matricial:
x + y + z = 0
x – y – 5z = 0
x + 2y + 4z = 0
Solución:
Dado:
x + y + z = 0
x – y – 5z = 0
x + 2y + 4z = 0
hacha = 0
Ahora, |A| = 1(6) – 1(9) + 1(3)
|A| = 9 – 9
|A| = 0
Por lo tanto, el sistema tiene infinitas soluciones.
Sea z = k
x + y = –k
x – y = 5k
Pregunta 6. Resolver el sistema de ecuaciones lineales homogéneas por método matricial:
x + y – z = 0
x – 2y + z = 0
3x + 6y –5z = 0
Solución:
Dado:
x + y – z = 0
x – 2y + z = 0
3x + 6y –5z = 0
hacha = 0
Ahora, |A| = 1(4) – 1(–8) – 1(12)
|A| = 4 + 8 – 12
|A| = 0
Por lo tanto, el sistema tiene infinitas soluciones.
Sea z = k
x + y = –k
x – 2y = –k
Pregunta 7. Resolver el sistema de ecuaciones lineales homogéneas por método matricial:
3x + y – 2z = 0
x + y + z = 0
x – 2y + z =0
Solución:
Dado:
3x + y – 2z = 0
x + y + z = 0
x – 2y + z =0
hacha = 0
Ahora, |A| = 3(3) – 1(0) – 2(–3)
|A| = 9 – 0 + 6
|A| = 15 ≠ 0,
Por lo tanto, el sistema dado solo tiene soluciones triviales dadas por x = y = z = 0.
Pregunta 8. Resolver el sistema de ecuaciones lineales homogéneas por método matricial:
2x + 3y – z =0
x – y – 2z = 0
3x + y + 3z = 0
Solución:
Dado:
2x + 3y – z =0
x – y – 2z = 0
3x + y + 3z = 0
hacha = 0
Ahora, |A| = 2(–3 + 2) – 3(3 + 6) – 1(4)
|A| = –2 – 27 – 4
|A| = –33 ≠ 0,
Por lo tanto, el sistema dado solo tiene soluciones triviales dadas por x = y = z = 0.
Publicación traducida automáticamente
Artículo escrito por yashchuahan y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA