Problema 1. Simplifica cada uno de los siguientes y escribe como un número racional en forma de p/q:
(yo) 3/4 + 5/6 + -7/8
Solución:
2 = 2 × 2
6 = 2 × 3
8 = 2 × 2 × 2
MCM es 2 × 2 × 2 × 3 = 24
= (3 × 6 + 5 × 4 + (-7 × 3)) / 24
= (18 + 20 – 21) / 24
= (38 – 21) / 24
= 17 / 24
(ii) 2/3 + -5/6 + -7/9
Solución:
MCM de 3, 6 y 9 es 18
= (2 × 6 + (-5 × 3) + (-7 × 2)) / 18
= (12 – 15 – 14) / 18
= (12 – 29) / 18
= -17 / 18
(iii) -11/2 + 7/6 + -5/8
Solución:
2 = 2 × 1
6 = 2 × 3
8 = 2 × 2 × 2
MCM es 2 × 2 × 2 × 3 = 24
= (-11 × 12 + 7 × 4 + (-5 × 3)) / 24
= (-132 + 28 – 15) / 24
= (-147 + 28) / 24
= -119 / 24
(iv) -4/5 + -7/10 + -8/15
Solución :
10 = 5 × 2
15 = 3 × 5
MCM es 5 × 2 × 3 = 30
= (-4 × 6 + (-7 × 3) + (-8 × 2)) / 30
= (-24 – 21 – 16) / 30
= -61 / 30
(v) -9/10 + 22/15 + 13/-20
Solución :
Esto se puede escribir como
-9/10 + 22/15 + -13/20
10 = 2 × 5
15 = 3 × 5
20 = 2 × 2 × 5
MCM es 2 × 2 × 3 × 5 = 60
= (-9 × 6 + 22 × 4 + (-13 × 3)) / 60
= (-54 + 88 – 39) / 60
= (-93 + 88) / 60
= -5 / 60
= -1 / 12
(vi) 5/3 + 3/-2 + -7/3 + 3
Solución :
Esto se puede escribir como
5 / 3 + -3 / 2 + -7 / 3 + 3 / 1
mcm es 6
= (5 × 2 + (-3 × 3) + (-7 × 2) + 3 × 6) / 6
= (10 – 9 -14 + 18) / 6
= (28 – 23) / 6
= 5 / 6
Problema 2. Exprese cada uno de los siguientes como un número racional de la forma p/q:
(yo) -8/3 + -1/4 + -11/6 + 3/8 + -3
Solución :
4 = 2 × 2
6 = 2 × 3
8 = 2 × 2 × 2
MCM es 2 × 2 × 2 × 3 = 24
= (-8 × 8 + (-1 × 6) + (-11 × 4) + 3 × 3 + (-3 × 24)) / 24
= (-64 – 6 – 44 + 9 – 72) / 24
= (-186 + 9) / 24
= -177 / 24
= -59 / 8
(ii) 6/7 + 1 + -7/9 + 19/21 + -12/7
Solución :
(6 / 7 + -12 / 7) + (-7 / 9) + 19 / 21 + 1 (Tomando números con el mismo denominador juntos)
= (6 – 12) / 7 + (-7 / 9) + 19 / 21+1
= -6/7 + -7/9 + 19/21 + 1/1
9 = 3 × 3
21 = 3 × 7
MCM de 7, 1, 9 y 21 es 63
= (-6 × 9 + (-7 × 7) + 19 × 3 + 1 × 63) / 63
= (-54 – 49 + 57 + 63) / 63
= (-103 + 120) / 63
= 17 / 63
(iii) 15/2 + 9/8 + -11/3 + 6 + -7/6
Solución :
15 / 2 + 9/8 + (-11 / 3) + 6 / 1 + (-7 / 6)
MCM de 2, 8, 3, 1 y 6 es 24
= (15 × 12 + 9 × 3 + (-11 × 8) + 6 × 24 + (-7 × 4)) / 24
= (180 + 27 – 88 + 144 – 28) / 24
= (351 – 116) / 24
= (235) / 24
(iv) -7/4 + 0 + -9/5 + 19/10 + 11/14
Solución :
4 = 2 × 2
5 = 5 × 1
10 = 2 × 5
14 = 2 × 7
mcm es 2 × 2 × 5 × 7 es 140
= (-7 × 35 + (-9 × 28) + 19 × 14 + 11 × 10) / 140
= (-245 – 252 + 266 + 110) / 140
= (-497 + 376) / 140
= (-121) / 140
(v) -7/4 + 5/3 + -1/2 + -5/6 + 2
Solución :
MCM de 4, 3, 2 y 6 es 12
= (-7 × 3 + 5 × 4 + (-1 × 6) + (-5 × 2) + 2 × 12) / 12
= (-21 + 20 – 6 – 10 + 24) / 12
= (-37 + 44) / 12
= 7 / 12
Problema 3. Simplifica:
(yo) -3/2 + 5/4 + -7/4
Solución:
Juntando números con el mismo denominador
= -3 / 2 + (5 – 7) / 4
= -3 / 2 – 2 / 4
MCM de 2 y 4 es 4
= (-3 × 2 – 2 × 1) / 4
= (-6 – 2) / 4
= (-8) / 4
= -2
(ii) 5/3 + -7/6 + -2/3
Solución :
Juntando números con el mismo denominador
(5/3 + -2/3) + -7/6
= (5 – 2) / 3 + -7 / 6
= 3 / 3 + (-7 / 6)
MCM de 3 y 6 es 6
= (3 × 2 + (-7 × 1)) / 6
= (6 – 7) / 6
= -1 / 6
(iii) 5/4 – 7/6 – (-2/3)
Solución :
Esto se puede escribir como
5/4 – 7/6 + 2/3
MCM de 4,6 y 3 es 12
= (5 × 3 – 7 × 2 + 2 × 4) / 12
= (15 – 14 + 8) / 12
= (23 – 14) / 12
= 9 / 12
= 3 / 4
(iv) -2/5 – (-3/10) – (-4/7)
Solución :
Esto se puede escribir como:
-2 / 5 + 3 / 10 + 4 / 7
MCM de 5,10 y 7 es 70
= (-2 × 14 + 3 × 7 + 4 × 10) / 70
= (-28 + 21 + 40) / 70
= (-28 + 61) / 70
= 33 / 70
(v) 5/6 + -2/5 – (-2/15)
Solución :
Esto se puede escribir como
5 / 6 + -2 / 5 + 2 / 15
6 = 2 × 3
5 = 5 × 1
15 = 3 × 5
MCM es 2 × 3 × 5 = 30
= (5 × 5 + (-2 × 6) + 2 × 2) / 30
= (25 – 12 + 4) / 30
= (29 – 12) / 30
= 17 / 30
(vi) 3/8 – (-2/9) + (-5/36)
Solución :
Esto se puede escribir como
3 / 8 + 2 / 9 – 5 / 36
8 = 2 × 2 × 2
9 = 3 × 3
36 = 2 × 2 × 3 × 3
MCM es 2 × 2 × 2 × 3 × 3 = 72
= (3 × 9 + 2 × 8 – 5 × 2) / 72
= (27 + 16 – 10) / 72
= (43 – 10) / 72
= 33 / 72
= 11 / 24
Publicación traducida automáticamente
Artículo escrito por kashika1145 y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA