Comprobar si el número dado es un cuadrado perfecto

Dado un número, comprueba si es un cuadrado perfecto o no. 

Ejemplos: 

Input : 2500
Output : Yes
Explanation:
2500 is a perfect square.
50 * 50 = 2500

Input  : 2555
Output : No

Acercarse:

  1. Tome la raíz cuadrada de Floor()ed del número.
  2. Multiplica la raíz cuadrada dos veces.
  3. Use el operador booleano igual para verificar si el producto de la raíz cuadrada es igual al número dado.

C++

// CPP program to find if x is a
// perfect square.
#include <bits/stdc++.h>
using namespace std;
 
bool isPerfectSquare(long double x)
{
    // Find floating point value of
    // square root of x.
    if (x >= 0) {
 
        long long sr = sqrt(x);
         
        // if product of square root
        //is equal, then
        // return T/F
        return (sr * sr == x);
    }
    // else return false if n<0
    return false;
}
 
int main()
{
    long long x = 2502;
    if (isPerfectSquare(x))
        cout << "Yes";
    else
        cout << "No";
    return 0;
}

Java

// Java program to find if x is a
// perfect square.
class GFG {
 
    static boolean isPerfectSquare(int x)
    {
        if (x >= 0) {
           
            // Find floating point value of
            // square root of x.
            int sr = (int)Math.sqrt(x);
           
            // if product of square root
            // is equal, then
            // return T/F
 
            return ((sr * sr) == x);
        }
        return false;
    }
 
    // Driver code
    public static void main(String[] args)
    {
        int x = 2502;
 
        if (isPerfectSquare(x))
            System.out.print("Yes");
        else
            System.out.print("No");
    }
}
 
// This code is contributed by Anant Agarwal.

Python3

# Python program to find if x is a
# perfect square.
 
import math
 
 
def isPerfectSquare(x):
 
    #if x >= 0,
    if(x >= 0):
        sr = int(math.sqrt(x))
        # sqrt function returns floating value so we have to convert it into integer
        #return boolean T/F
        return ((sr*sr) == x)
    return false
 
# Driver code
 
 
x = 2502
if (isPerfectSquare(x)):
    print("Yes")
else:
    print("No")
 
# This code is contributed
# by Anant Agarwal.

C#

// C# program to find if x is a
// perfect square.
using System;
class GFG {
 
    static bool isPerfectSquare(double x)
    {
 
        // Find floating point value of
        // square root of x.
        if (x >= 0) {
 
            double sr = Math.Sqrt(x);
           
            // if product of square root
            // is equal, then
            // return T/F
            return (sr * sr == x);
        }
        // else return false if n<0
        return false;
    }
 
    // Driver code
    public static void Main()
    {
        double x = 2502;
 
        if (isPerfectSquare(x))
            Console.WriteLine("Yes");
        else
            Console.WriteLine("No");
    }
}
 
// This code is contributed by vt_m.

PHP

<?php
// PHP program to find if x is
// a perfect square.
 
function isPerfectSquare($x)
{
    // Find floating point value
    // of square root of x.
    $sr = sqrt($x);
     
    // If square root is an integer
    return (($sr - floor($sr)) == 0);
}
 
// Driver code
$x = 2502;
if (isPerfectSquare($x))
    echo("Yes");
else
    echo("No");
 
// This code is contributed by Ajit.
?>

Javascript

<script>
 
// JavaScript program to find if x is a
// perfect square.
 
function isPerfectSquare(x)
    {
        if (x >= 0) {
            
            // Find floating point value of
            // square root of x.
            let sr = Math.sqrt(x);
            
            // if product of square root
            // is equal, then
            // return T/F
  
            return ((sr * sr) == x);
        }
        return false;
    }
  
// Driver code
 
        let x = 2500;
  
        if (isPerfectSquare(x))
            document.write("Yes");
        else
            document.write("No");
 
// This code is contributed by souravghosh0416.
</script>
Producción

No

Para obtener más información sobre la función sqrt incorporada, consulte este Stackoverflow y este subprocesos de StackExchange.

Otro enfoque :

  1. Utilice la función suelo y techo.
  2. Si son iguales eso implica que el número es un cuadrado perfecto.

C++

// C++ program for the above approach
#include <iostream>
#include <math.h>
using namespace std;
 
void checkperfectsquare(int n)
{
     
    // If ceil and floor are equal
    // the number is a perfect
    // square
    if (ceil((double)sqrt(n)) == floor((double)sqrt(n))) {
        cout << "perfect square";
    }
    else {
        cout << "not a perfect square";
    }
}
 
// Driver Code
int main()
{
 
    int n = 49;
    checkperfectsquare(n);
    return 0;
}

Java

// Java program for the above approach
import java.io.*;
 
class GFG{
 
static void checkperfectsquare(int n)
{
     
    // If ceil and floor are equal
    // the number is a perfect
    // square
    if (Math.ceil((double)Math.sqrt(n)) ==
        Math.floor((double)Math.sqrt(n)))
    {
        System.out.print("perfect square");
    }
    else
    {
        System.out.print("not a perfect square");
    }
}
 
// Driver Code
public static void main(String[] args)
{
    int n = 49;
     
    checkperfectsquare(n);
}
}
 
// This code is contributed by subhammahato348

Python3

# Python3 program for the above approach
import math
 
def checkperfectsquare(x):
     
    # If ceil and floor are equal
    # the number is a perfect
    # square
    if (math.ceil(math.sqrt(n)) ==
       math.floor(math.sqrt(n))):
        print("perfect square")
    else:
        print("not a perfect square")
     
# Driver code
n = 49
  
checkperfectsquare(n)
 
# This code is contributed by jana_sayantan

C#

// C# program for the above approach
using System;
 
class GFG{
 
static void checkperfectsquare(int n)
{
     
    // If ceil and floor are equal
    // the number is a perfect
    // square
    if (Math.Ceiling((double)Math.Sqrt(n)) ==
        Math.Floor((double)Math.Sqrt(n)))
    {
        Console.Write("perfect square");
    }
    else
    {
        Console.Write("not a perfect square");
    }
}
 
// Driver Code
public static void Main()
{
    int n = 49;
 
    checkperfectsquare(n);
}
}
 
// This code is contributed by subhammahato348

Javascript

<script>
 
// Javascript program for the above approach
function checkperfectsquare(n)
{
     
    // If ceil and floor are equal
    // the number is a perfect
    // square
    if (Math.ceil(Math.sqrt(n)) ==
        Math.floor(Math.sqrt(n)))
    {
        document.write("perfect square");
    }
    else
    {
        document.write("not a perfect square");
    }
}
 
// Driver Code
let n = 49;
 
checkperfectsquare(n);
 
// This code is contributed by rishavmahato348
 
</script>
Producción

perfect square

Complejidad del tiempo: O(sqrt(n))

Complejidad espacial : O(1)

Publicación traducida automáticamente

Artículo escrito por Aditya Darekar y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *