Compruebe si existe o no un punto que tenga las coordenadas X e Y máximas

Dada una array 2D arr[] que consta de N coordenadas de la forma (X, Y) , la tarea es encontrar una coordenada de la array dada tal que la coordenada X de este punto sea mayor que todas las demás coordenadas X y la La coordenada Y de este punto es mayor que todas las demás coordenadas Y. Si no existe tal punto, imprima -1 .

Ejemplos:

Entrada: arr[][] = {(1, 2), (2, 1), (3, 4), (4, 3), (5, 5)}
Salida: (5, 5)
Explicación:
El máximo La coordenada X es 5 y la coordenada Y máxima es 5.
Dado que el punto (5, 5) está presente en la array, imprima (5, 5) como la respuesta requerida.

Entrada: arr[] = {(5, 3), (3, 5)}
Salida: -1
Explicación:
La coordenada X máxima es 5 y la coordenada Y máxima es 5. Dado que + (5, 5) no está presente. Por lo tanto, imprima -1. 

Enfoque ingenuo: el enfoque más simple es atravesar la array y, para cada punto, verificar si son las coordenadas X e Y máximas o no. Si no existe tal punto, imprima -1 . De lo contrario, imprima el punto como la respuesta requerida.

A continuación se muestra la implementación del enfoque anterior:

C++

// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Initialize INF as infinity
int INF = INT_MAX;
 
// Function to return the point having
// maximum X and Y coordinates
int* findMaxPoint(int arr[][2], int i, int n)
{
     
    // Base Case
    if (i == n)
    {
        arr[0][0] = INF;
        arr[0][1] = INF;
        return arr[0];
    }
 
    // Stores if valid point exists
    bool flag = true;
 
    // If point arr[i] is valid
    for(int j = 0; j < n; j++)
    {
         
        // Check for the same point
        if (j == i)
            continue;
 
        // Check for a valid point
        if (arr[j][0] >= arr[i][0] ||
            arr[j][1] >= arr[i][1])
        {
            flag = false;
            break;
        }
    }
 
    // If current point is the
    // required point
    if (flag)
        return arr[i];
 
    // Otherwise
    return findMaxPoint(arr, i + 1, n);
}
 
// Function to find the required point
void findMaxPoints(int arr[][2], int n)
{
     
    // Stores the point with maximum
    // X and Y-coordinates
    int ans[2];
    memcpy(ans, findMaxPoint(arr, 0, n),
           2 * sizeof(int));
 
    // If no required point exists
    if (ans[0] == INF)
    {
        cout << -1;
    }
    else
    {
        cout << "(" << ans[0] << " "
             << ans[1] << ")";
    }
}
 
// Driver Code
int main()
{
     
    // Given array of points
    int arr[][2] = { { 1, 2 }, { 2, 1 },
                     { 3, 4 }, { 4, 3 },
                     { 5, 5 } };
 
    int N = sizeof(arr) / sizeof(arr[0]);
 
    // Function Call
    findMaxPoints(arr, N);
     
    return 0;
}
 
// This code is contributed by subhammahato348

Java

// Java program for the above approach
 
import java.io.*;
 
class GFG {
 
    // Initialize INF as infinity
    static int INF = Integer.MAX_VALUE;
 
    // Function to return the point having
    // maximum X and Y coordinates
    static int[] findMaxPoint(
        int arr[][], int i, int n)
    {
        // Base Case
        if (i == n)
            return new int[] { INF, INF };
 
        // Stores if valid point exists
        boolean flag = true;
 
        // If point arr[i] is valid
        for (int j = 0; j < n; j++) {
 
            // Check for the same point
            if (j == i)
                continue;
 
            // Check for a valid point
            if (arr[j][0] >= arr[i][0]
                || arr[j][1] >= arr[i][1]) {
                flag = false;
                break;
            }
        }
 
        // If current point is the
        // required point
        if (flag)
            return arr[i];
 
        // Otherwise
        return findMaxPoint(arr, i + 1, n);
    }
 
    // Function to find the required point
    static void findMaxPoints(int arr[][],
                              int n)
    {
        // Stores the point with maximum
        // X and Y-coordinates
        int ans[] = findMaxPoint(arr, 0, n);
 
        // If no required point exists
        if (ans[0] == INF) {
            System.out.println(-1);
        }
        else {
            System.out.println(
                "(" + ans[0] + " "
                + ans[1] + ")");
        }
    }
 
    // Driver Code
    public static void main(String[] args)
    {
        // Given array of points
        int arr[][] = new int[][] {{ 1, 2 }, { 2, 1 },
                                   { 3, 4 }, { 4, 3 },
                                   { 5, 5 }};
 
        int N = arr.length;
 
        // Function Call
        findMaxPoints(arr, N);
    }
}

Python3

# Python3 program for the above approach
import  sys
 
# Initialize INF as infinity
INF = sys.maxsize;
 
# Function to return the point having
# maximum X and Y coordinates
def findMaxPoint(arr, i, n):
   
    # Base Case
    if (i == n):
        return [INF, INF]
 
    # Stores if valid point exists
    flag = True;
 
    # If point arr[i] is valid
    for j in range(n):
 
        # Check for the same point
        if (j == i):
            continue;
 
        # Check for a valid point
        if (arr[j][0] >= arr[i][0] or arr[j][1] >= arr[i][1]):
            flag = False;
            break;
 
    # If current point is the
    # required point
    if (flag):
        return arr[i];
 
    # Otherwise
    return findMaxPoint(arr, i + 1, n);
 
# Function to find the required point
def findMaxPoints(arr, n):
   
    # Stores the point with maximum
    # X and Y-coordinates
    ans = findMaxPoint(arr, 0, n);
 
    # If no required point exists
    if (ans[0] == INF):
        print(-1);
    else:
        print("(" , ans[0] , " " , ans[1] , ")");
 
# Driver Code
if __name__ == '__main__':
   
    # Given array of points
    arr = [[1, 2],
           [2, 1],
           [3, 4],
           [4, 3],
           [5, 5]];
 
    N = len(arr);
 
    # Function Call
    findMaxPoints(arr, N);
 
# This code is contributed by shikhasingrajput

C#

// C# program for the above approach
using System;
 
class GFG{
 
// Initialize INF as infinity
static int INF = int.MaxValue;
 
// Function to return the point having
// maximum X and Y coordinates
static int[] findMaxPoint(int [,]arr, int i,
                          int n)
{
     
    // Base Case
    if (i == n)
        return new int[]{INF, INF};
 
    // Stores if valid point exists
    bool flag = true;
 
    // If point arr[i] is valid
    for(int j = 0; j < n; j++)
    {
         
        // Check for the same point
        if (j == i)
            continue;
 
        // Check for a valid point
        if (arr[j, 0] >= arr[i, 0] ||
            arr[j, 1] >= arr[i, 1])
        {
            flag = false;
            break;
        }
    }
 
    // If current point is the
    // required point
    int []ans  = new int[arr.GetLength(1)];
    if (flag)
    {
        for(int k = 0; k < ans.GetLength(0); k++)
            ans[k] = arr[i, k];
             
        return ans;
    }
 
    // Otherwise
    return findMaxPoint(arr, i + 1, n);
}
 
// Function to find the required point
static void findMaxPoints(int [,]arr,
                          int n)
{
     
    // Stores the point with maximum
    // X and Y-coordinates
    int []ans = findMaxPoint(arr, 0, n);
 
    // If no required point exists
    if (ans[0] == INF)
    {
        Console.WriteLine(-1);
    }
    else
    {
        Console.WriteLine("(" + ans[0] + " " +
                                ans[1] + ")");
    }
}
 
// Driver Code
public static void Main(String[] args)
{
     
    // Given array of points
    int [,]arr = new int[,]{ { 1, 2 }, { 2, 1 },
                             { 3, 4 }, { 4, 3 },
                             { 5, 5 } };
 
    int N = arr.GetLength(0);
 
    // Function Call
    findMaxPoints(arr, N);
}
}
 
// This code is contributed by Princi Singh

Javascript

<script>
 
// Javascript program for the above approach
 
// Initialize INF as infinity
let INF = Number.MAX_VALUE;
 
// Function to return the point having
// maximum X and Y coordinates
function findMaxPoint(arr, i, n)
{
     
    // Base Case
    if (i == n)
        return [INF, INF];
 
    // Stores if valid point exists
    let flag = true;
 
    // If point arr[i] is valid
    for(let j = 0; j < n; j++)
    {
         
        // Check for the same point
        if (j == i)
            continue;
 
        // Check for a valid point
        if (arr[j][0] >= arr[i][0] ||
            arr[j][1] >= arr[i][1])
        {
            flag = false;
            break;
        }
    }
 
    // If current point is the
    // required point
    if (flag)
        return arr[i];
 
    // Otherwise
    return findMaxPoint(arr, i + 1, n);
}
 
// Function to find the required point
function findMaxPoints(arr, n)
{
     
    // Stores the point with maximum
    // X and Y-coordinates
    let ans = findMaxPoint(arr, 0, n);
 
    // If no required point exists
    if (ans[0] == INF)
    {
        document.write(-1);
    }
    else
    {
        document.write("(" + ans[0] + " " +
                             ans[1] + ")");
    }
}
 
// Driver code
 
// Given array of points
let arr = [ [ 1, 2 ], [ 2, 1 ],
            [ 3, 4 ], [ 4, 3 ],
            [ 5, 5 ] ];
 
let N = arr.length;
 
// Function Call
findMaxPoints(arr, N);
 
// This code is contributed by splevel62
 
</script>
Producción: 

(5 5)

 

Complejidad de tiempo: O(N 2 ) donde N es la longitud de la array dada.
Espacio Auxiliar: O(N)

Enfoque eficiente: la idea es encontrar las coordenadas X e Y máximas. Sean maxX y maxY . Nuevamente recorra la array dada verificando si el punto ( maxX , maxY ) está presente. Siga los pasos a continuación para resolver el problema:

  1. Recorra la array dada arr[] y encuentre las coordenadas X e Y máximas . Sean maxX y maxY .
  2. De nuevo, recorra la array arr[] de i = 0 a N-1 comprobando si (arr[i].X, arr[i].Y) es igual a (maxX, maxY) .
  3. Si (maxX, maxY) está presente en la array arr[] , imprime (maxX, maxY) sino imprime -1 .

A continuación se muestra la implementación del enfoque anterior:

C++

// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
#define N 5
#define P 2
 
// Function to find the point having
// max X and Y coordinates
void findMaxPoint(int arr[N][P])
{
     
    // Initialize maxX and maxY
    int maxX = INT_MIN;
    int maxY = INT_MIN;
 
    // Length of the given array
    int n = N;
 
    // Get maximum X & Y coordinates
    for(int i = 0; i < n; i++)
    {
        maxX = max(maxX, arr[i][0]);
        maxY = max(maxY, arr[i][1]);
    }
 
    // Check if the required point
    // i.e., (maxX, maxY) is present
    for(int i = 0; i < n; i++)
    {
         
        // If point with maximum X and
        // Y coordinates is present
        if (maxX == arr[i][0] &&
            maxY == arr[i][1])
        {
            cout << "(" << maxX << ", "
                        << maxY << ")";
                  
            return;
        }
    }
 
    // If no such point exists
    cout << (-1);
}
 
// Driver Code
int main()
{
     
    // Given array of points
    int arr[N][P] = { { 1, 2 }, { 2, 1 },
                      { 3, 4 }, { 4, 3 },
                      { 5, 5 } };
 
    // Print answer
    findMaxPoint(arr);
}
 
// This code is contributed by 29AjayKumar

Java

// Java program for the above approach
 
import java.io.*;
 
class GFG {
 
    // Function to find the point having
    // max X and Y coordinates
    static void findMaxPoint(int arr[][])
    {
        // Initialize maxX and maxY
        int maxX = Integer.MIN_VALUE;
        int maxY = Integer.MIN_VALUE;
 
        // Length of the given array
        int n = arr.length;
 
        // Get maximum X & Y coordinates
        for (int i = 0; i < n; i++) {
            maxX = Math.max(maxX, arr[i][0]);
            maxY = Math.max(maxY, arr[i][1]);
        }
 
        // Check if the required point
        // i.e., (maxX, maxY) is present
        for (int i = 0; i < n; i++) {
 
            // If point with maximum X and
            // Y coordinates is present
            if (maxX == arr[i][0]
                && maxY == arr[i][1]) {
 
                System.out.println(
                    "(" + maxX + ", "
                    + maxY + ")");
                return;
            }
        }
 
        // If no such point exists
        System.out.println(-1);
    }
 
    // Driver Code
    public static void main(String[] args)
    {
        // Given array of points
        int arr[][] = new int[][] {{ 1, 2 }, { 2, 1 },
                                   { 3, 4 }, { 4, 3 },
                                   { 5, 5 }};
 
        // Print answer
        findMaxPoint(arr);
    }
}

Python3

# Python3 program for the above approach
import sys;
 
# Function to find the pohaving
# max X and Y coordinates
def findMaxPoint(arr):
     
    # Initialize maxX and maxY
    maxX = -sys.maxsize;
    maxY = -sys.maxsize;
 
    # Length of the given array
    n = len(arr);
 
    # Get maximum X & Y coordinates
    for i in range(n):
        maxX = max(maxX, arr[i][0]);
        maxY = max(maxY, arr[i][1]);
 
    # Check if the required point
    # i.e., (maxX, maxY) is present
    for i in range(n):
 
        # If powith maximum X and
        # Y coordinates is present
        if (maxX == arr[i][0] and maxY == arr[i][1]):
            print("(" , maxX , ", " , maxY , ")");
            return;
 
    # If no such poexists
    print(-1);
 
# Driver Code
if __name__ == '__main__':
   
    # Given array of points
    arr = [[1, 2], [2, 1], [3, 4], [4, 3], [5, 5]];
 
    # Print answer
    findMaxPoint(arr);
 
# This code is contributed by gauravrajput1

C#

// C# program for the above approach
using System;
 
class GFG{
 
// Function to find the point having
// max X and Y coordinates
static void findMaxPoint(int [,]arr)
{
     
    // Initialize maxX and maxY
    int maxX = int.MinValue;
    int maxY = int.MinValue;
 
    // Length of the given array
    int n = arr.GetLength(0);
 
    // Get maximum X & Y coordinates
    for(int i = 0; i < n; i++)
    {
        maxX = Math.Max(maxX, arr[i, 0]);
        maxY = Math.Max(maxY, arr[i, 1]);
    }
 
    // Check if the required point
    // i.e., (maxX, maxY) is present
    for(int i = 0; i < n; i++)
    {
         
        // If point with maximum X and
        // Y coordinates is present
        if (maxX == arr[i, 0] &&
            maxY == arr[i, 1])
        {
            Console.WriteLine("(" + maxX + ", " +
                                    maxY + ")");
            return;
        }
    }
 
    // If no such point exists
    Console.WriteLine(-1);
}
 
// Driver Code
public static void Main(String[] args)
{
     
    // Given array of points
    int [,]arr = new int[,]{ { 1, 2 }, { 2, 1 },
                             { 3, 4 }, { 4, 3 },
                             { 5, 5 } };
 
    // Print answer
    findMaxPoint(arr);
}
}
 
// This code is contributed by Amit Katiyar

Javascript

<script>
 
// JavaScript program for the above approach
 
// Function to find the pohaving
// max X and Y coordinates
function findMaxPoint(arr){
     
   //  Initialize maxX and maxY
   let maxX = Number.MIN_VALUE;
   let maxY = Number.MIN_VALUE;
 
   //  Length of the given array
   let n = arr.length;
 
   //  Get maximum X & Y coordinates
    for(let i=0;i<n;i++){
        maxX = Math.max(maxX, arr[i][0]);
        maxY = Math.max(maxY, arr[i][1]);
    }
 
   //  Check if the required point
   //  i.e., (maxX, maxY) is present
    for(let i=0;i<n;i++){
 
      //   If powith maximum X and
      //   Y coordinates is present
        if (maxX == arr[i][0] && maxY == arr[i][1]){
            document.write("(" , maxX , ", " , maxY , ")");
            return;
        }
   }
   //  If no such poexists
    document.write(-1);
}
 
// Driver Code
   
//  Given array of points
let arr = [[1, 2], [2, 1], [3, 4], [4, 3], [5, 5]];
 
//  Pranswer
findMaxPoint(arr);
 
// This code is contributed by shinjanpatra
 
</script>
Producción: 

(5, 5)

 

Complejidad temporal: O(N)
Espacio auxiliar: O(N)

Publicación traducida automáticamente

Artículo escrito por BIRANCHINARAYANPADHI y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *