Dada una array arr[] de enteros positivos donde 2 ≤ arr[i] ≤ 10 6 para todos los valores posibles de i . La tarea es verificar si existe al menos un elemento en la array dada que forme un par coprimo con todos los demás elementos de la array. Si no existe tal elemento, imprima No else imprima Sí .
Ejemplos:
Entrada: arr[] = {2, 8, 4, 10, 6, 7}
Salida: Sí
, 7 es coprimo con todos los demás elementos de la arrayEntrada: arr[] = {3, 6, 9, 12}
Salida: No
Enfoque ingenuo: una solución simple es comprobar si el gcd de cada elemento con todos los demás elementos es igual a 1. La complejidad temporal de esta solución es O(n 2 ) .
Enfoque eficiente: una solución eficiente es generar todos los factores primos de los números enteros en la array dada. Usando hash, almacene el conteo de cada elemento que es un factor primo de cualquiera de los números en la array. Si el elemento no contiene ningún factor primo común con otros elementos, siempre forma un par coprimo con otros elementos.
Para generar factores primos, consulte el artículo Factorización prima usando Sieve en O (log n)
A continuación se muestra la implementación del enfoque anterior:
C++
// C++ implementation of the approach #include <bits/stdc++.h> using namespace std; #define MAXN 1000001 // Stores smallest prime factor for every number int spf[MAXN]; // Hash to store prime factors count int hash1[MAXN] = { 0 }; // Function to calculate SPF (Smallest Prime Factor) // for every number till MAXN void sieve() { spf[1] = 1; for (int i = 2; i < MAXN; i++) // Marking smallest prime factor for every // number to be itself spf[i] = i; // Separately marking spf for every even // number as 2 for (int i = 4; i < MAXN; i += 2) spf[i] = 2; // Checking if i is prime for (int i = 3; i * i < MAXN; i++) { // Marking SPF for all numbers divisible by i if (spf[i] == i) { for (int j = i * i; j < MAXN; j += i) // Marking spf[j] if it is not // previously marked if (spf[j] == j) spf[j] = i; } } } // Function to store the prime factors after dividing // by the smallest prime factor at every step void getFactorization(int x) { int temp; while (x != 1) { temp = spf[x]; if (x % temp == 0) { // Storing the count of // prime factors in hash hash1[spf[x]]++; x = x / spf[x]; } while (x % temp == 0) x = x / temp; } } // Function that returns true if there are // no common prime factors between x // and other numbers of the array bool check(int x) { int temp; while (x != 1) { temp = spf[x]; // Checking whether it common // prime factor with other numbers if (x % temp == 0 && hash1[temp] > 1) return false; while (x % temp == 0) x = x / temp; } return true; } // Function that returns true if there is // an element in the array which is coprime // with all the other elements of the array bool hasValidNum(int arr[], int n) { // Using sieve for generating prime factors sieve(); for (int i = 0; i < n; i++) getFactorization(arr[i]); // Checking the common prime factors // with other numbers for (int i = 0; i < n; i++) if (check(arr[i])) return true; return false; } // Driver code int main() { int arr[] = { 2, 8, 4, 10, 6, 7 }; int n = sizeof(arr) / sizeof(arr[0]); if (hasValidNum(arr, n)) cout << "Yes"; else cout << "No"; return 0; }
Java
// Java implementation of the approach class GFG { static int MAXN = 1000001; // Stores smallest prime factor for every number static int[] spf = new int[MAXN]; // Hash to store prime factors count static int[] hash1 = new int[MAXN]; // Function to calculate SPF (Smallest Prime Factor) // for every number till MAXN static void sieve() { spf[1] = 1; for (int i = 2; i < MAXN; i++) // Marking smallest prime factor for every // number to be itself spf[i] = i; // Separately marking spf for every even // number as 2 for (int i = 4; i < MAXN; i += 2) spf[i] = 2; // Checking if i is prime for (int i = 3; i * i < MAXN; i++) { // Marking SPF for all numbers divisible by i if (spf[i] == i) { for (int j = i * i; j < MAXN; j += i) // Marking spf[j] if it is not // previously marked if (spf[j] == j) spf[j] = i; } } } // Function to store the prime factors after dividing // by the smallest prime factor at every step static void getFactorization(int x) { int temp; while (x != 1) { temp = spf[x]; if (x % temp == 0) { // Storing the count of // prime factors in hash hash1[spf[x]]++; x = x / spf[x]; } while (x % temp == 0) x = x / temp; } } // Function that returns true if there are // no common prime factors between x // and other numbers of the array static boolean check(int x) { int temp; while (x != 1) { temp = spf[x]; // Checking whether it common // prime factor with other numbers if (x % temp == 0 && hash1[temp] > 1) return false; while (x % temp == 0) x = x / temp; } return true; } // Function that returns true if there is // an element in the array which is coprime // with all the other elements of the array static boolean hasValidNum(int []arr, int n) { // Using sieve for generating prime factors sieve(); for (int i = 0; i < n; i++) getFactorization(arr[i]); // Checking the common prime factors // with other numbers for (int i = 0; i < n; i++) if (check(arr[i])) return true; return false; } // Driver code public static void main (String[] args) { int []arr = { 2, 8, 4, 10, 6, 7 }; int n = arr.length; if (hasValidNum(arr, n)) System.out.println("Yes"); else System.out.println("No"); } } // This code is contributed by chandan_jnu
Python3
# Python3 implementation of the approach MAXN = 1000001 # Stores smallest prime factor for # every number spf = [i for i in range(MAXN)] # Hash to store prime factors count hash1 = [0 for i in range(MAXN)] # Function to calculate SPF (Smallest # Prime Factor) for every number till MAXN def sieve(): # Separately marking spf for # every even number as 2 for i in range(4, MAXN, 2): spf[i] = 2 # Checking if i is prime for i in range(3, MAXN): if i * i >= MAXN: break # Marking SPF for all numbers # divisible by i if (spf[i] == i): for j in range(i * i, MAXN, i): # Marking spf[j] if it is not # previously marked if (spf[j] == j): spf[j] = i # Function to store the prime factors # after dividing by the smallest prime # factor at every step def getFactorization(x): while (x != 1): temp = spf[x] if (x % temp == 0): # Storing the count of # prime factors in hash hash1[spf[x]] += 1 x = x // spf[x] while (x % temp == 0): x = x // temp # Function that returns true if there # are no common prime factors between x # and other numbers of the array def check(x): while (x != 1): temp = spf[x] # Checking whether it common # prime factor with other numbers if (x % temp == 0 and hash1[temp] > 1): return False while (x % temp == 0): x = x //temp return True # Function that returns true if there is # an element in the array which is coprime # with all the other elements of the array def hasValidNum(arr, n): # Using sieve for generating # prime factors sieve() for i in range(n): getFactorization(arr[i]) # Checking the common prime factors # with other numbers for i in range(n): if (check(arr[i])): return True return False # Driver code arr = [2, 8, 4, 10, 6, 7] n = len(arr) if (hasValidNum(arr, n)): print("Yes") else: print("No") # This code is contributed by mohit kumar
C#
// C# implementation of the approach using System; class GFG { static int MAXN=1000001; // Stores smallest prime factor for every number static int[] spf = new int[MAXN]; // Hash to store prime factors count static int[] hash1 = new int[MAXN]; // Function to calculate SPF (Smallest Prime Factor) // for every number till MAXN static void sieve() { spf[1] = 1; for (int i = 2; i < MAXN; i++) // Marking smallest prime factor for every // number to be itself spf[i] = i; // Separately marking spf for every even // number as 2 for (int i = 4; i < MAXN; i += 2) spf[i] = 2; // Checking if i is prime for (int i = 3; i * i < MAXN; i++) { // Marking SPF for all numbers divisible by i if (spf[i] == i) { for (int j = i * i; j < MAXN; j += i) // Marking spf[j] if it is not // previously marked if (spf[j] == j) spf[j] = i; } } } // Function to store the prime factors after dividing // by the smallest prime factor at every step static void getFactorization(int x) { int temp; while (x != 1) { temp = spf[x]; if (x % temp == 0) { // Storing the count of // prime factors in hash hash1[spf[x]]++; x = x / spf[x]; } while (x % temp == 0) x = x / temp; } } // Function that returns true if there are // no common prime factors between x // and other numbers of the array static bool check(int x) { int temp; while (x != 1) { temp = spf[x]; // Checking whether it common // prime factor with other numbers if (x % temp == 0 && hash1[temp] > 1) return false; while (x % temp == 0) x = x / temp; } return true; } // Function that returns true if there is // an element in the array which is coprime // with all the other elements of the array static bool hasValidNum(int []arr, int n) { // Using sieve for generating prime factors sieve(); for (int i = 0; i < n; i++) getFactorization(arr[i]); // Checking the common prime factors // with other numbers for (int i = 0; i < n; i++) if (check(arr[i])) return true; return false; } // Driver code static void Main() { int []arr = { 2, 8, 4, 10, 6, 7 }; int n = arr.Length; if (hasValidNum(arr, n)) Console.WriteLine("Yes"); else Console.WriteLine("No"); } } // This code is contributed by chandan_jnu
PHP
<?php // PHP implementation of the approach $MAXN = 10001; // Stores smallest prime factor for every number $spf = array_fill(0, $MAXN, 0); // Hash to store prime factors count $hash1 = array_fill(0, $MAXN, 0); // Function to calculate SPF (Smallest Prime Factor) // for every number till MAXN function sieve() { global $spf, $MAXN, $hash1; $spf[1] = 1; for ($i = 2; $i < $MAXN; $i++) // Marking smallest prime factor for every // number to be itself $spf[$i] = $i; // Separately marking spf for every even // number as 2 for ($i = 4; $i < $MAXN; $i += 2) $spf[$i] = 2; // Checking if i is prime for ($i = 3; $i * $i < $MAXN; $i++) { // Marking SPF for all numbers divisible by i if ($spf[$i] == $i) { for ($j = $i * $i; $j < $MAXN; $j += $i) // Marking spf[j] if it is not // previously marked if ($spf[$j] == $j) $spf[$j] = $i; } } } // Function to store the prime factors after dividing // by the smallest prime factor at every step function getFactorization($x) { global $spf,$MAXN,$hash1; while ($x != 1) { $temp = $spf[$x]; if ($x % $temp == 0) { // Storing the count of // prime factors in hash $hash1[$spf[$x]]++; $x = (int)($x / $spf[$x]); } while ($x % $temp == 0) $x = (int)($x / $temp); } } // Function that returns true if there are // no common prime factors between x // and other numbers of the array function check($x) { global $spf,$MAXN,$hash1; while ($x != 1) { $temp = $spf[$x]; // Checking whether it common // prime factor with other numbers if ($x % $temp == 0 && $hash1[$temp] > 1) return false; while ($x % $temp == 0) $x = (int)($x / $temp); } return true; } // Function that returns true if there is // an element in the array which is coprime // with all the other elements of the array function hasValidNum($arr, $n) { global $spf,$MAXN,$hash1; // Using sieve for generating prime factors sieve(); for ($i = 0; $i < $n; $i++) getFactorization($arr[$i]); // Checking the common prime factors // with other numbers for ($i = 0; $i < $n; $i++) if (check($arr[$i])) return true; return false; } // Driver code $arr = array( 2, 8, 4, 10, 6, 7 ); $n = count($arr); if (hasValidNum($arr, $n)) echo "Yes"; else echo "No"; // This code is contributed by chandan_jnu ?>
Javascript
<script> // Javascript implementation of the approach let MAXN = 1000001; // Stores smallest prime factor for every number let spf = new Array(MAXN); // Hash to store prime factors count let hash1 = new Array(MAXN); // Function to calculate SPF (Smallest Prime Factor) // for every number till MAXN function sieve() { spf[1] = 1; for(let i = 2; i < MAXN; i++) // Marking smallest prime factor for // every number to be itself spf[i] = i; // Separately marking spf for every even // number as 2 for(let i = 4; i < MAXN; i += 2) spf[i] = 2; // Checking if i is prime for(let i = 3; i * i < MAXN; i++) { // Marking SPF for all numbers divisible by i if (spf[i] == i) { for(let j = i * i; j < MAXN; j += i) // Marking spf[j] if it is not // previously marked if (spf[j] == j) spf[j] = i; } } } // Function to store the prime factors // after dividing by the smallest prime // factor at every step function getFactorization(x) { let temp; while (x != 1) { temp = spf[x]; if (x % temp == 0) { // Storing the count of // prime factors in hash hash1[spf[x]]++; x = x / spf[x]; } while (x % temp == 0) x = x / temp; } } // Function that returns true if there are // no common prime factors between x // and other numbers of the array function check(x) { let temp; while (x != 1) { temp = spf[x]; // Checking whether it common // prime factor with other numbers if (x % temp == 0 && hash1[temp] > 1) return false; while (x % temp == 0) x = x / temp; } return true; } // Function that returns true if there is // an element in the array which is coprime // with all the other elements of the array function hasValidNum(arr, n) { // Using sieve for generating prime factors sieve(); for(let i = 0; i < n; i++) getFactorization(arr[i]); // Checking the common prime factors // with other numbers for(let i = 0; i < n; i++) if (check(arr[i])) return true; return false; } // Driver code let arr = [ 2, 8, 4, 10, 6, 7 ]; let n = arr.length; if (hasValidNum(arr, n)) document.write("Yes"); else document.write("No"); // This code is contributed by unknown2108 </script>
Yes
Publicación traducida automáticamente
Artículo escrito por Sairahul Jella y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA