Compruebe si la array se puede convertir en otra array mediante la transposición de subarrays cuadradas

Dadas dos arrays NXM de enteros. En una operación, podemos transponer cualquier subarray cuadrada en array1. La tarea es verificar si matrix1 se puede convertir a matrix2 con la operación dada.
Ejemplos: 
 

Entrada: array1[][] = { 
{1, 2, 3}, 
{4, 5, 6}, 
{7, 8, 9}}, 
array2[][] = { 
{1, 4, 7}, 
{ 2, 5, 6}, 
{3, 8, 9}} 
Salida: Sí 
Transponga toda la array y luego transponemos la 
subarray con esquinas en las celdas (2, 2) y (3, 3).
Entrada: array1[][] = { 
{1, 2}, 
{3, 4}}, 
array2[][] = { 
{1, 4}, 
{3, 8}} 
Salida: No 
 

Enfoque: ordena las diagonales de ambas arrays y compáralas. Si ambas arrays son iguales después de ordenar las diagonales, entonces la array1 se puede convertir en array2. El siguiente método es correcto por el hecho de que al transponer los números solo se pueden transponer a cualquiera de sus diagonales.
A continuación se muestra la implementación del enfoque anterior. 
 

C++

// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
#define n 3
#define m 3
 
// Function that returns true if matrix1
// can be converted to matrix2
// with the given operation
bool check(int a[n][m], int b[n][m])
{
 
    // Traverse all the diagonals
    // starting at first column
    for (int i = 0; i < n; i++) {
        vector<int> v1, v2;
        int r = i;
        int col = 0;
 
        // Traverse in diagonal
        while (r >= 0 && col < m) {
 
            // Store the diagonal elements
            v1.push_back(a[r][col]);
            v2.push_back(b[r][col]);
 
            // Move up
            r--;
            col++;
        }
 
        // Sort the elements
        sort(v1.begin(), v1.end());
        sort(v2.begin(), v2.end());
 
        // Check if they are same
        for (int i = 0; i < v1.size(); i++) {
            if (v1[i] != v2[i])
                return false;
        }
    }
 
    // Traverse all the diagonals
    // starting at last row
    for (int j = 1; j < m; j++) {
        vector<int> v1, v2;
        int r = n - 1;
        int col = j;
 
        // Traverse in the diagonal
        while (r >= 0 && col < m) {
 
            // Store diagonal elements
            v1.push_back(a[r][col]);
            v2.push_back(b[r][col]);
            r--;
            col++;
        }
 
        // Sort all elements
        sort(v1.begin(), v1.end());
        sort(v2.begin(), v2.end());
 
        // Check for same
        for (int i = 0; i < v1.size(); i++) {
            if (v1[i] != v2[i])
                return false;
        }
    }
 
    // If every element matches
    return true;
}
 
// Driver code
int main()
{
    int a[n][m] = { { 1, 2, 3 }, { 4, 5, 6 }, { 7, 8, 9 } };
    int b[n][m] = { { 1, 4, 7 }, { 2, 5, 6 }, { 3, 8, 9 } };
 
    if (check(a, b))
        cout << "Yes";
    else
        cout << "No";
 
    return 0;
}

Java

// Java implementation of the approach
import java.util.*;
 
class GFG
{
 
    static final int n = 3;
    static final int m = 3;
 
    // Function that returns true if matrix1
    // can be converted to matrix2
    // with the given operation
    static boolean check(int a[][], int b[][])
    {
 
        // Traverse all the diagonals
        // starting at first column
        for (int i = 0; i < n; i++)
        {
            Vector<Integer> v1 = new Vector<Integer>();
            Vector<Integer> v2 = new Vector<Integer>();
            int r = i;
            int col = 0;
 
            // Traverse in diagonal
            while (r >= 0 && col < m)
            {
 
                // Store the diagonal elements
                v1.add(a[r][col]);
                v2.add(b[r][col]);
 
                // Move up
                r--;
                col++;
            }
 
            // Sort the elements
            Collections.sort(v1);
            Collections.sort(v2);
 
            // Check if they are same
            for (int j = 0; j < v1.size(); j++)
            {
                if (v1.get(j) != v2.get(j))
                {
                    return false;
                }
            }
        }
 
        // Traverse all the diagonals
        // starting at last row
        for (int j = 1; j < m; j++)
        {
            Vector<Integer> v1 = new Vector<Integer>();
            Vector<Integer> v2 = new Vector<Integer>();
            int r = n - 1;
            int col = j;
 
            // Traverse in the diagonal
            while (r >= 0 && col < m)
            {
 
                // Store diagonal elements
                v1.add(a[r][col]);
                v2.add(b[r][col]);
                r--;
                col++;
            }
 
            // Sort all elements
            Collections.sort(v1);
            Collections.sort(v2);
 
            // Check for same
            for (int i = 0; i < v1.size(); i++)
            {
                if (v1.get(i) != v2.get(i))
                {
                    return false;
                }
            }
        }
 
        // If every element matches
        return true;
    }
 
    // Driver code
    public static void main(String[] args)
    {
        int a[][] = {{1, 2, 3}, {4, 5, 6}, {7, 8, 9}};
        int b[][] = {{1, 4, 7}, {2, 5, 6}, {3, 8, 9}};
 
        if (check(a, b))
        {
            System.out.println("Yes");
        }
        else
        {
            System.out.println("No");
        }
    }
}
 
// This code contributed by Rajput-Ji

Python3

# Python 3 implementation of the approach
n = 3
m = 3
 
# Function that returns true if matrix1
# can be converted to matrix2
# with the given operation
def check(a, b):
     
    # Traverse all the diagonals
    # starting at first column
    for i in range(n):
        v1 = []
        v2 = []
        r = i
        col = 0
 
        # Traverse in diagonal
        while (r >= 0 and col < m):
             
            # Store the diagonal elements
            v1.append(a[r][col])
            v2.append(b[r][col])
 
            # Move up
            r -= 1
            col += 1
 
        # Sort the elements
        v1.sort(reverse = False)
        v2.sort(reverse = False)
 
        # Check if they are same
        for i in range(len(v1)):
            if (v1[i] != v2[i]):
                return False
 
    # Traverse all the diagonals
    # starting at last row
    for j in range(1, m):
        v1 = []
        v2 = []
        r = n - 1
        col = j
 
        # Traverse in the diagonal
        while (r >= 0 and col < m):
             
            # Store diagonal elements
            v1.append(a[r][col])
            v2.append(b[r][col])
            r -= 1
            col += 1
 
        # Sort all elements
        v1.sort(reverse = False)
        v2.sort(reverse = False)
 
        # Check for same
        for i in range(len(v1)):
            if (v1[i] != v2[i]):
                return False
                 
    # If every element matches
    return True
 
# Driver code
if __name__ == '__main__':
    a = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
    b = [[1, 4, 7], [2, 5, 6], [3, 8, 9]]
 
    if (check(a, b)):
        print("Yes")
    else:
        print("No")
 
# This code is contributed by
# Surendra_Gangwar

C#

// C# implementation of the approach
using System;
using System.Collections.Generic;
 
class GFG
{
 
    static readonly int n = 3;
    static readonly int m = 3;
 
    // Function that returns true if matrix1
    // can be converted to matrix2
    // with the given operation
    static bool check(int [,]a, int [,]b)
    {
 
        // Traverse all the diagonals
        // starting at first column
        for (int i = 0; i < n; i++)
        {
            List<int> v1 = new List<int>();
            List<int> v2 = new List<int>();
            int r = i;
            int col = 0;
 
            // Traverse in diagonal
            while (r >= 0 && col < m)
            {
 
                // Store the diagonal elements
                v1.Add(a[r, col]);
                v2.Add(b[r, col]);
 
                // Move up
                r--;
                col++;
            }
 
            // Sort the elements
            v1.Sort();
            v2.Sort();
 
            // Check if they are same
            for (int j = 0; j < v1.Count; j++)
            {
                if (v1[j] != v2[j])
                {
                    return false;
                }
            }
        }
 
        // Traverse all the diagonals
        // starting at last row
        for (int j = 1; j < m; j++)
        {
            List<int> v1 = new List<int>();
            List<int> v2 = new List<int>();
            int r = n - 1;
            int col = j;
 
            // Traverse in the diagonal
            while (r >= 0 && col < m)
            {
 
                // Store diagonal elements
                v1.Add(a[r, col]);
                v2.Add(b[r, col]);
                r--;
                col++;
            }
 
            // Sort all elements
            v1.Sort();
            v2.Sort();
 
            // Check for same
            for (int i = 0; i < v1.Count; i++)
            {
                if (v1[i] != v2[i])
                {
                    return false;
                }
            }
        }
 
        // If every element matches
        return true;
    }
 
    // Driver code
    public static void Main()
    {
        int [,]a = {{1, 2, 3}, {4, 5, 6}, {7, 8, 9}};
        int [,]b = {{1, 4, 7}, {2, 5, 6}, {3, 8, 9}};
 
        if (check(a, b))
        {
            Console.WriteLine("Yes");
        }
        else
        {
            Console.WriteLine("No");
        }
    }
}
 
/* This code contributed by PrinciRaj1992 */

PHP

<?php
// PHP implementation of the approach
$n = 3;
$m = 3;
 
// Function that returns true if matrix1
// can be converted to matrix2
// with the given operation
function check($a, $b)
{
    global $n, $m;
 
    // Traverse all the diagonals
    // starting at first column
    for ($i = 0; $i < $n; $i++)
    {
        $v1 = array();
        $v2 = array();
        $r = $i;
        $col = 0;
 
        // Traverse in diagonal
        while ($r >= 0 && $col < $m)
        {
 
            // Store the diagonal elements
            array_push($v1, $a[$r][$col]);
            array_push($v2, $b[$r][$col]);
 
            // Move up
            $r--;
            $col++;
        }
 
        // Sort the elements
        sort($v1);
        sort($v2);
 
        // Check if they are same
        for ($i = 0; $i < count($v1); $i++)
        {
            if ($v1[$i] != $v2[$i])
                return false;
        }
    }
 
    // Traverse all the diagonals
    // starting at last row
    for ($j = 1; $j < $m; $j++)
    {
        $v1 = array();
        $v2 = array();
        $r = $n - 1;
        $col = $j;
 
        // Traverse in the diagonal
        while ($r >= 0 && $col < $m)
        {
 
            // Store diagonal elements
            array_push($v1, $a[$r][$col]);
            array_push($v2, $b[$r][$col]);
            $r--;
            $col++;
        }
 
        // Sort all elements
        sort($v1);
        sort($v2);
 
        // Check for same
        for ($i = 0; $i < count($v1); $i++)
        {
            if ($v1[$i] != $v2[$i])
                return false;
        }
    }
 
    // If every element matches
    return true;
}
 
// Driver code
$a = array(array( 1, 2, 3 ),
           array( 4, 5, 6 ),
           array( 7, 8, 9 ));
$b = array(array( 1, 4, 7 ),
           array( 2, 5, 6 ),
           array( 3, 8, 9 ));
 
if (check($a, $b))
    echo "Yes";
else
    echo "No";
 
// This code is contributed by mits
?>

Javascript

<script>
 
// JavaScript implementation of the approach
var n = 3
var m = 3
 
// Function that returns true if matrix1
// can be converted to matrix2
// with the given operation
function check(a, b)
{
 
    // Traverse all the diagonals
    // starting at first column
    for (var i = 0; i < n; i++) {
        var v1 = [], v2 = [];
        var r = i;
        var col = 0;
 
        // Traverse in diagonal
        while (r >= 0 && col < m) {
 
            // Store the diagonal elements
            v1.push(a[r][col]);
            v2.push(b[r][col]);
 
            // Move up
            r--;
            col++;
        }
 
        // Sort the elements
        v1.sort();
        v2.sort();
 
        // Check if they are same
        for (var i = 0; i < v1.length; i++) {
            if (v1[i] != v2[i])
                return false;
        }
    }
 
    // Traverse all the diagonals
    // starting at last row
    for (var j = 1; j < m; j++) {
        var v1 = [], v2 = [];
        var r = n - 1;
        var col = j;
 
        // Traverse in the diagonal
        while (r >= 0 && col < m) {
 
            // Store diagonal elements
            v1.push(a[r][col]);
            v2.push(b[r][col]);
            r--;
            col++;
        }
 
        // Sort all elements
        v1.sort();
        v2.sort();
 
        // Check for same
        for (var i = 0; i < v1.length; i++) {
            if (v1[i] != v2[i])
                return false;
        }
    }
 
    // If every element matches
    return true;
}
 
// Driver code
var a = [ [ 1, 2, 3 ], [ 4, 5, 6 ], [ 7, 8, 9 ] ];
var b = [ [ 1, 4, 7 ], [ 2, 5, 6 ], [ 3, 8, 9 ] ];
if (check(a, b))
    document.write( "Yes");
else
    document.write( "No");
 
 
</script>
Producción: 

Yes

 

Complejidad de tiempo: O(max(N *M*logM, N*M * logN)) que se puede escribir como O(N*M*max(logN,logM)), ya que estamos usando un bucle para atravesar N veces y estamos usando la función de clasificación en una array de tamaño M que costará O(M*logM) y también estamos recorriendo M veces y clasificando una array de tamaño N que costará O(N*logN).
 Espacio auxiliar: O(max(N,M)), ya que estamos usando espacio adicional para la array v1 y v2.

Publicación traducida automáticamente

Artículo escrito por Striver y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *