Comprobar si un número es Fermat Pseudoprime

Dado un número N y un número base A . La tarea es verificar si el número es un Pseudoprimo de Fermat a la base. 
El número N se llama Pseudoprimo de Fermat a la base A, si 
 

1. A > 1 
2. N es un número compuesto 
3. N divide A N-1 – 1. 
 

Ejemplos: 
 

Entrada: N = 645, a = 2 
Salida:
645 = 3*5*43, por lo tanto, es un número compuesto 
También 645 divide a 2^(644)-1 
Por lo tanto, es un pseudoprimo de Fermat.
Entrada: N = 6, a = 2 
Salida:
 

Enfoque: El enfoque consiste en verificar las siguientes condiciones: 
 

Si todas las condiciones anteriores se cumplen, entonces N es un pseudoprimo de fermat para la base A.
A continuación se muestra la implementación del enfoque anterior: 
 

C++

// C++ program to check if N is Fermat pseudoprime
// to the base A or not
#include <bits/stdc++.h>
using namespace std;
 
// Function to check if the given number is composite
bool checkcomposite(int n)
{
    // Check if there is any divisor of n less than sqrt(n)
    for (int i = 2; i <= sqrt(n); i++) {
        if (n % i == 0)
            return 1;
    }
    return 0;
}
 
// Effectively calculate (x^y) modulo mod
int power(int x, int y, int mod)
{
 
    // Initialize result
    int res = 1;
 
    while (y) {
 
        // If power is odd, then update the answer
        if (y & 1)
            res = (res * x) % mod;
 
        // Square the number and reduce
        // the power to its half
        y = y >> 1;
        x = (x * x) % mod;
    }
 
    // Return the result
    return res;
}
 
// Function to check for Fermat Pseudoprime
bool Check(int n, int a)
{
 
    // If it is composite and satisfy Fermat criterion
    if (a>1 && checkcomposite(n) && power(a, n - 1, n) == 1)
        return 1;
 
    // Else return 0
    return 0;
}
 
// Driver code
int main()
{
 
    int N = 645;
    int a = 2;
     
   //  Function call
    cout << Check(N, a);
 
    return 0;
}

Java

// Java program to check if N is Fermat pseudoprime
// to the base A or not
class GFG
{
 
    // Function to check if
    // the given number is composite
    static boolean checkcomposite(int n)
    {
        // Check if there is any divisor of n
        // less than sqrt(n)
        for (int i = 2; i <= Math.sqrt(n); i++)
        {
            if (n % i == 0)
            {
                return true;
            }
        }
        return false;
    }
 
    // Effectively calculate (x^y) modulo mod
    static int power(int x, int y, int mod)
    {
 
        // Initialize result
        int res = 1;
 
        while (y != 0)
        {
 
            // If power is odd,
            // then update the answer
            if ((y & 1) == 1)
            {
                res = (res * x) % mod;
            }
 
            // Square the number and reduce
            // the power to its half
            y = y >> 1;
            x = (x * x) % mod;
        }
 
        // Return the result
        return res;
    }
 
    // Function to check for Fermat Pseudoprime
    static int Check(int n, int a)
    {
 
        // If it is composite and
        // satisfy Fermat criterion
        if (a > 1 && checkcomposite(n)
                && power(a, n - 1, n) == 1)
        {
            return 1;
        }
 
        // Else return 0
        return 0;
    }
 
    // Driver Code
    public static void main(String[] args)
    {
        int N = 645;
        int a = 2;
 
        // Function call
        System.out.println(Check(N, a));
    }
}
 
// This code is contributed by 29AjayKumar

Python3

# Python3 program to check if N is Fermat pseudoprime
# to the base A or not
 
from math import sqrt
 
# Function to check if the given number is composite
def checkcomposite(n):
     
    # Check if there is any divisor of n less than sqrt(n)
    for i in range(2,int(sqrt(n))+1,1):
        if (n % i == 0):
            return 1
    return 0
 
# Effectively calculate (x^y) modulo mod
def power(x, y, mod):
    # Initialize result
    res = 1
 
    while (y):
        # If power is odd, then update the answer
        if (y & 1):
            res = (res * x) % mod
 
        # Square the number and reduce
        # the power to its half
        y = y >> 1
        x = (x * x) % mod
 
    # Return the result
    return res
 
# Function to check for Fermat Pseudoprime
def Check(n,a):
    # If it is composite and satisfy Fermat criterion
    if (a>1 and checkcomposite(n) and power(a, n - 1, n) == 1):
        return 1
 
    # Else return 0
    return 0
 
# Driver code
if __name__ == '__main__':
    N = 645
    a = 2
 
    # Function call
    print(Check(N, a))
 
# This code is contributed by
# Surendra_Gangwar

C#

// C# program to check if N is Fermat pseudoprime
// to the base A or not
using System;
 
class GFG
{
     
    // Function to check if
    // the given number is composite
    static bool checkcomposite(int n)
    {
        // Check if there is any divisor of n
        // less than sqrt(n)
        for (int i = 2; i <= Math.Sqrt(n); i++)
        {
            if (n % i == 0)
                return true;
        }
        return false;
    }
     
    // Effectively calculate (x^y) modulo mod
    static int power(int x, int y, int mod)
    {
     
        // Initialize result
        int res = 1;
     
        while (y != 0)
        {
     
            // If power is odd, then update the answer
            if ((y & 1) == 1)
                res = (res * x) % mod;
     
            // Square the number and reduce
            // the power to its half
            y = y >> 1;
            x = (x * x) % mod;
        }
     
        // Return the result
        return res;
    }
     
    // Function to check for Fermat Pseudoprime
    static int Check(int n, int a)
    {
     
        // If it is composite and satisfy Fermat criterion
        if (a > 1 && checkcomposite(n) &&
                     power(a, n - 1, n) == 1)
            return 1;
     
        // Else return 0
        return 0;
    }
     
    // Driver code
    static public void Main ()
    {
        int N = 645;
        int a = 2;
     
        // Function call
        Console.WriteLine(Check(N, a));
    }
}
 
// This code is contributed by AnkitRai01

Javascript

<script>
 
// Javascript program to check if
// N is Fermat pseudoprime
// to the base A or not
 
// Function to check if the given
// number is composite
function checkcomposite(n)
{
    // Check if there is any divisor
    // of n less than sqrt(n)
    for (let i = 2; i <= Math.sqrt(n); i++)
    {
        if (n % i == 0)
            return 1;
    }
    return 0;
}
 
// Effectively calculate (x^y) modulo mod
function power(x, y, mod)
{
 
    // Initialize result
    let res = 1;
 
    while (y) {
 
        // If power is odd, then update the answer
        if (y & 1)
            res = (res * x) % mod;
 
        // Square the number and reduce
        // the power to its half
        y = y >> 1;
        x = (x * x) % mod;
    }
 
    // Return the result
    return res;
}
 
// Function to check for Fermat Pseudoprime
function Check(n, a)
{
 
    // If it is composite and satisfy
    // Fermat criterion
    if (a>1 && checkcomposite(n) &&
    power(a, n - 1, n) == 1)
        return 1;
 
    // Else return 0
    return 0;
}
 
// Driver code
 
    let N = 645;
    let a = 2;
     
       //  Function call
    document.write(Check(N, a));
 
</script>
Producción: 

1

 

Complejidad del tiempo : O(sqrt(N))

Espacio Auxiliar: O(1)
 

Publicación traducida automáticamente

Artículo escrito por CrazyPro y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *