Comprobar si un número es palíndromo – Part 2

Dado un número entero, escribe una función que devuelva verdadero si el número dado es palíndromo, de lo contrario, falso. Por ejemplo, 12321 es palíndromo, pero 1451 no es palíndromo. 

C++

// A recursive C++ program to check
// whether a given number
// is palindrome or not
#include <iostream>
using namespace std;
 
// A function that returns true only
// if num contains one
// digit
int oneDigit(int num)
{
     
    // Comparison operation is faster
    // than division
    // operation. So using following
    // instead of "return num
    // / 10 == 0;"
    return (num >= 0 && num < 10);
}
 
// A recursive function to find
// out whether num is
// palindrome or not. Initially, dupNum
// contains address of
// a copy of num.
bool isPalUtil(int num, int* dupNum)
{
     
    // Base case (needed for recursion
    // termination): This
    // statement mainly compares the
    // first digit with the
    // last digit
    if (oneDigit(num))
        return (num == (*dupNum) % 10);
 
    // This is the key line in this
    // method. Note that all
    // recursive calls have a separate
    // copy of num, but they
    // all share same copy of *dupNum.
    // We divide num while
    // moving up the recursion tree
    if (!isPalUtil(num / 10, dupNum))
        return false;
 
    // The following statements are
    // executed when we move up
    // the recursion call tree
    *dupNum /= 10;
 
    // At this point, if num%10 contains
    // i'th digit from
    // beginning, then (*dupNum)%10
    // contains i'th digit
    // from end
    return (num % 10 == (*dupNum) % 10);
}
 
// The main function that uses
// recursive function
// isPalUtil() to find out whether
// num is palindrome or not
int isPal(int num)
{
     
    // Check if num is negative,
    // make it positive
    if (num < 0)
        num = -num;
 
    // Create a separate copy of num,
    // so that modifications
    // made to address dupNum don't
    // change the input number.
    // *dupNum = num
    int* dupNum = new int(num);
 
    return isPalUtil(num, dupNum);
}
 
// Driver program to test
// above functions
int main()
{
    int n = 12321;
    isPal(n) ? cout <<"Yes\n":  cout <<"No" << endl;
 
    n = 12;
    isPal(n) ? cout <<"Yes\n": cout <<"No" << endl;
 
    n = 88;
    isPal(n) ? cout <<"Yes\n": cout <<"No" << endl;
 
    n = 8999;
    isPal(n) ? cout <<"Yes\n": cout <<"No";
    return 0;
}
 
// this code is contributed by shivanisinghss2110

C

// A recursive C program to check
// whether a given number
// is palindrome or not
#include <stdio.h>
 
// A function that returns true only
// if num contains one
// digit
int oneDigit(int num)
{
     
    // Comparison operation is faster
    // than division
    // operation. So using following
    // instead of "return num
    // / 10 == 0;"
    return (num >= 0 && num < 10);
}
 
// A recursive function to find
// out whether num is
// palindrome or not. Initially, dupNum
// contains address of
// a copy of num.
bool isPalUtil(int num, int* dupNum)
{
     
    // Base case (needed for recursion
    // termination): This
    // statement mainly compares the
    // first digit with the
    // last digit
    if (oneDigit(num))
        return (num == (*dupNum) % 10);
 
    // This is the key line in this
    // method. Note that all
    // recursive calls have a separate
    // copy of num, but they
    // all share same copy of *dupNum.
    // We divide num while
    // moving up the recursion tree
    if (!isPalUtil(num / 10, dupNum))
        return false;
 
    // The following statements are
    // executed when we move up
    // the recursion call tree
    *dupNum /= 10;
 
    // At this point, if num%10 contains
    // i'th digit from
    // beginning, then (*dupNum)%10
    // contains i'th digit
    // from end
    return (num % 10 == (*dupNum) % 10);
}
 
// The main function that uses
// recursive function
// isPalUtil() to find out whether
// num is palindrome or not
int isPal(int num)
{
     
    // Check if num is negative,
    // make it positive
    if (num < 0)
        num = -num;
 
    // Create a separate copy of num,
    // so that modifications
    // made to address dupNum don't
    // change the input number.
    // *dupNum = num
    int* dupNum = new int(num);
 
    return isPalUtil(num, dupNum);
}
 
// Driver program to test
// above functions
int main()
{
    int n = 12321;
    isPal(n) ? printf("Yes\n") : printf("No\n");
 
    n = 12;
    isPal(n) ? printf("Yes\n") : printf("No\n");
 
    n = 88;
    isPal(n) ? printf("Yes\n") : printf("No\n");
 
    n = 8999;
    isPal(n) ? printf("Yes\n") : printf("No\n");
    return 0;
}

Java

// A recursive Java program to
// check whether a given number
// is palindrome or not
import java.io.*;
import java.util.*;
  
public class CheckPallindromNumberRecursion {
  
    // A function that returns true
    // only if num contains one digit
    public static int oneDigit(int num) {
  
        if ((num >= 0) && (num < 10))
            return 1;
        else
            return 0;
    }
  
    public static int isPalUtil
    (int num, int dupNum) throws Exception {
  
        // base condition to return once we
        // move past first digit
        if (num == 0) {
            return dupNum;
        } else {
            dupNum = isPalUtil(num / 10, dupNum);
        }
  
        // Check for equality of first digit of
        // num and dupNum
        if (num % 10 == dupNum % 10) {
            // if first digit values of num and
            // dupNum are equal divide dupNum
            // value by 10 to keep moving in sync
            // with num.
            return dupNum / 10;
        } else {
            // At position values are not
            // matching throw exception and exit.
            // no need to proceed further.
            throw new Exception();
        }
  
    }
  
    public static int isPal(int num)
    throws Exception {
  
        if (num < 0)
            num = (-num);
  
        int dupNum = (num);
  
        return isPalUtil(num, dupNum);
    }
  
    public static void main(String args[]) {
  
        int n = 1242;
        try {
            isPal(n);
            System.out.println("Yes");
        } catch (Exception e) {
            System.out.println("No");
        }
        n = 1231;
        try {
            isPal(n);
            System.out.println("Yes");
        } catch (Exception e) {
            System.out.println("No");
        }
  
        n = 12;
        try {
            isPal(n);
            System.out.println("Yes");
        } catch (Exception e) {
            System.out.println("No");
        }
  
        n = 88;
        try {
            isPal(n);
            System.out.println("Yes");
        } catch (Exception e) {
            System.out.println("No");
        }
  
        n = 8999;
        try {
            isPal(n);
            System.out.println("Yes");
        } catch (Exception e) {
            System.out.println("No");
        }
    }
}
  
// This code is contributed
// by Nasir J

Python3

# A recursive Python3 program to check
# whether a given number is palindrome or not
 
# A function that returns true
# only if num contains one digit
def oneDigit(num):
     
    # comparison operation is faster
    # than division operation. So
    # using following instead of
    # "return num / 10 == 0;"
    return ((num >= 0) and
            (num < 10))
 
# A recursive function to find
# out whether num is palindrome
# or not. Initially, dupNum
# contains address of a copy of num.
def isPalUtil(num, dupNum):
     
    # Base case (needed for recursion
    # termination): This statement
    # mainly compares the first digit
    # with the last digit
    if oneDigit(num):
        return (num == (dupNum[0]) % 10)
 
    # This is the key line in this
    # method. Note that all recursive
    # calls have a separate copy of
    # num, but they all share same
    # copy of *dupNum. We divide num
    # while moving up the recursion tree
    if not isPalUtil(num //10, dupNum):
        return False
 
    # The following statements are
    # executed when we move up the
    # recursion call tree
    dupNum[0] = dupNum[0] //10
 
    # At this point, if num%10
    # contains i'th digit from
    # beginning, then (*dupNum)%10
    # contains i'th digit from end
    return (num % 10 == (dupNum[0]) % 10)
 
# The main function that uses
# recursive function isPalUtil()
# to find out whether num is
# palindrome or not
def isPal(num):
    # If num is negative,
    # make it positive
    if (num < 0):
        num = (-num)
 
    # Create a separate copy of
    # num, so that modifications
    # made to address dupNum
    # don't change the input number.
    dupNum = [num] # *dupNum = num
 
    return isPalUtil(num, dupNum)
 
# Driver Code
n = 12321
if isPal(n):
    print("Yes")
else:
    print("No")
 
n = 12
if isPal(n) :
    print("Yes")
else:
    print("No")
 
n = 88
if isPal(n) :
    print("Yes")
else:
    print("No")
 
n = 8999
if isPal(n) :
    print("Yes")
else:
    print("No")
 
# This code is contributed by mits

C#

// A recursive C# program to
// check whether a given number
// is palindrome or not
using System;
 
class GFG
{
     
// A function that returns true
// only if num contains one digit
public static int oneDigit(int num)
{
    // comparison operation is
    // faster than division
    // operation. So using
    // following instead of
    // "return num / 10 == 0;"
    if((num >= 0) &&(num < 10))
    return 1;
    else
    return 0;
}
 
// A recursive function to
// find out whether num is
// palindrome or not.
// Initially, dupNum contains
// address of a copy of num.
public static int isPalUtil(int num,
                            int dupNum)
{
    // Base case (needed for recursion
    // termination): This statement
    // mainly compares the first digit
    // with the last digit
    if (oneDigit(num) == 1)
        if(num == (dupNum) % 10)
        return 1;
        else
        return 0;
 
    // This is the key line in
    // this method. Note that
    // all recursive calls have
    // a separate copy of num,
    // but they all share same
    // copy of *dupNum. We divide
    // num while moving up the
    // recursion tree
    if (isPalUtil((int)(num / 10), dupNum) == 0)
        return -1;
 
    // The following statements
    // are executed when we move
    // up the recursion call tree
    dupNum = (int)(dupNum / 10);
 
    // At this point, if num%10
    // contains i'th digit from
    // beginning, then (*dupNum)%10
    // contains i'th digit from end
    if(num % 10 == (dupNum) % 10)
        return 1;
    else
        return 0;
}
 
// The main function that uses
// recursive function isPalUtil()
// to find out whether num is
// palindrome or not
public static int isPal(int num)
{
    // If num is negative,
    // make it positive
    if (num < 0)
    num = (-num);
 
    // Create a separate copy
    // of num, so that modifications
    // made to address dupNum
    // don't change the input number.
    int dupNum = (num); // *dupNum = num
 
    return isPalUtil(num, dupNum);
}
 
// Driver Code
public static void Main()
{
int n = 12321;
if(isPal(n) == 0)
    Console.WriteLine("Yes");
else
    Console.WriteLine("No");
 
n = 12;
if(isPal(n) == 0)
    Console.WriteLine("Yes");
else
    Console.WriteLine( "No");
 
n = 88;
if(isPal(n) == 1)
    Console.WriteLine("Yes");
else
    Console.WriteLine("No");
 
n = 8999;
if(isPal(n) == 0)
    Console.WriteLine("Yes");
else
    Console.WriteLine("No");
}
}
 
// This code is contributed by mits

PHP

<?php
// A recursive PHP program to
// check whether a given number
// is palindrome or not
 
// A function that returns true
// only if num contains one digit
function oneDigit($num)
{
    // comparison operation is faster
    // than division operation. So
    // using following instead of
    // "return num / 10 == 0;"
    return (($num >= 0) &&
            ($num < 10));
}
 
// A recursive function to find
// out whether num is palindrome
// or not. Initially, dupNum
// contains address of a copy of num.
function isPalUtil($num, $dupNum)
{
    // Base case (needed for recursion
    // termination): This statement
    // mainly compares the first digit
    // with the last digit
    if (oneDigit($num))
        return ($num == ($dupNum) % 10);
 
    // This is the key line in this
    // method. Note that all recursive
    // calls have a separate copy of
    // num, but they all share same
    // copy of *dupNum. We divide num
    // while moving up the recursion tree
    if (!isPalUtil((int)($num / 10),
                         $dupNum))
        return -1;
 
    // The following statements are
    // executed when we move up the
    // recursion call tree
    $dupNum = (int)($dupNum / 10);
 
    // At this point, if num%10 
    // contains i'th digit from
    // beginning, then (*dupNum)%10
    // contains i'th digit from end
    return ($num % 10 == ($dupNum) % 10);
}
 
// The main function that uses
// recursive function isPalUtil()
// to find out whether num is
// palindrome or not
function isPal($num)
{
    // If num is negative,
    // make it positive
    if ($num < 0)
    $num = (-$num);
 
    // Create a separate copy of
    // num, so that modifications
    // made to address dupNum
    // don't change the input number.
    $dupNum = ($num); // *dupNum = num
 
    return isPalUtil($num, $dupNum);
}
 
// Driver Code
$n = 12321;
if(isPal($n) == 0)
    echo "Yes\n";
else
    echo "No\n";
 
$n = 12;
if(isPal($n) == 0)
    echo "Yes\n";
else
    echo "No\n";
 
$n = 88;
if(isPal($n) == 1)
    echo "Yes\n";
else
    echo "No\n";
 
$n = 8999;
if(isPal($n) == 0)
    echo "Yes\n";
else
    echo "No\n";
 
// This code is contributed by m_kit
?>

Javascript

<script>
// A recursive javascript program to
// check whether a given number
// is palindrome or not
 
    // A function that returns true
    // only if num contains one digit
    function oneDigit(num) {
  
        if ((num >= 0) && (num < 10))
            return 1;
        else
            return 0;
    }
  
    function isPalUtil
    (num , dupNum) {
  
        // base condition to return once we
        // move past first digit
        if (num == 0) {
            return dupNum;
        } else {
            dupNum = isPalUtil(parseInt(num / 10), dupNum);
        }
  
        // Check for equality of first digit of
        // num and dupNum
        if (num % 10 == dupNum % 10) {
            // if first digit values of num and
            // dupNum are equal divide dupNum
            // value by 10 to keep moving in sync
            // with num.
            return parseInt(dupNum / 10);
        } else {
            // At position values are not
            // matching throw exception and exit.
            // no need to proceed further.
            throw e;
        }
  
    }
  
    function isPal(num)
    {
  
        if (num < 0)
            num = (-num);
  
        var dupNum = (num);
  
        return isPalUtil(num, dupNum);
    }
  
     
  
    var n = 1242;
    try {
        isPal(n);
        document.write("<br>Yes");
    } catch (e) {
        document.write("<br>No");
    }
    n = 1231;
    try {
        isPal(n);
        document.write("<br>Yes");
    } catch (e) {
        document.write("<br>No");
        }
  
        n = 12;
        try {
            isPal(n);
            document.write("<br>Yes");
    } catch (e) {
        document.write("<br>No");
        }
  
        n = 88;
        try {
            isPal(n);
            document.write("<br>Yes");
    } catch (e) {
        document.write("<br>No");
        }
  
        n = 8999;
        try {
            isPal(n);
            document.write("<br>Yes");
    } catch (e) {
        document.write("<br>No");
    }
 
// This code is contributed by Amit Katiyar
</script>

C++14

// C++ implementation of the above approach
#include <iostream>
using namespace std;
 
// Function to check palindrome
int checkPalindrome(string str)
{
    // Calculating string length
    int len = str.length();
   
    // Traversing through the string
    // upto half its length
    for (int i = 0; i < len / 2; i++) {
       
        // Comparing i th character
        // from starting and len-i
        // th character from end
        if (str[i] != str[len - i - 1])
            return false;
    }
   
    // If the above loop doesn't return then it is
    // palindrome
    return true;
}
 
// Driver Code
int main()
{ // taking number as string
    string st
        = "112233445566778899000000998877665544332211";
    if (checkPalindrome(st) == true)
        cout << "Yes";
    else
        cout << "No";
    return 0;
}
// this code is written by vikkycirus

Java

// Java implementation of the above approach
import java.io.*;
 
class GFG{
 
// Function to check palindrome
static boolean checkPalindrome(String str)
{
     
    // Calculating string length
    int len = str.length();
 
    // Traversing through the string
    // upto half its length
    for(int i = 0; i < len / 2; i++)
    {
         
        // Comparing i th character
        // from starting and len-i
        // th character from end
        if (str.charAt(i) !=
            str.charAt(len - i - 1))
            return false;
    }
 
    // If the above loop doesn't return then
    // it is palindrome
    return true;
}
 
// Driver Code
public static void main(String[] args)
{
     
    // Taking number as string
    String st = "112233445566778899000000998877665544332211";
     
    if (checkPalindrome(st) == true)
        System.out.print("Yes");
    else
        System.out.print("No");
}
}
 
// This code is contributed by subhammahato348

Python3

# Python3 implementation of the above approach
 
# function to check palindrome
def checkPalindrome(str):
   
    # Run loop from 0 to len/2
    for i in range(0, len(str)//2):
        if str[i] != str[len(str)-i-1]:
            return False
           
    # If the above loop doesn't
    #return then it is palindrome
    return True
 
 
# Driver code
st = "112233445566778899000000998877665544332211"
if(checkPalindrome(st) == True):
    print("it is a palindrome")
else:
    print("It is not a palindrome")

C#

// C# implementation of the above approach
using System;
 
class GFG{
 
// Function to check palindrome
static bool checkPalindrome(string str)
{
     
    // Calculating string length
    int len = str.Length;
 
    // Traversing through the string
    // upto half its length
    for(int i = 0; i < len / 2; i++)
    {
         
        // Comparing i th character
        // from starting and len-i
        // th character from end
        if (str[i] != str[len - i - 1])
            return false;
    }
 
    // If the above loop doesn't return then
    // it is palindrome
    return true;
}
 
// Driver Code
public static void Main()
{
     
    // Taking number as string
    string st = "112233445566778899000000998877665544332211";
 
    if (checkPalindrome(st) == true)
        Console.Write("Yes");
    else
        Console.Write("No");
}
}
 
// This code is contributed by subhammahato348

Javascript

<script>
 
// Javascript implementation of the above approach
 
// Function to check palindrome
function checkPalindrome(str)
{
    // Calculating string length
    var len = str.length;
    
    // Traversing through the string
    // upto half its length
    for (var i = 0; i < len / 2; i++) {
        
        // Comparing ith character
        // from starting and len-ith
        // character from end
        if (str[i] != str[len - i - 1])
            return false;
    }
    
    // If the above loop doesn't return then it is
    // palindrome
    return true;
}
  
// Driver Code
 // taking number as string
    let st
        = "112233445566778899000000998877665544332211";
    if (checkPalindrome(st) == true)
        document.write("Yes");
    else
        document.write("No");
         
// This code is contributed by Mayank Tyagi
 
</script>

C++

// C++ program to implement the approach
#include<bits/stdc++.h>
using namespace std;
 
string checkPalindrome(int x) {
    string convertedNumber = to_string(x);
 
    string reverseString = convertedNumber;
    reverse(reverseString.begin(),reverseString.end());
    return reverseString == convertedNumber ? "Yes" : "No";
}
 
 
// Driver code
int main () {
 
    // Some Testcases...
    int num = 12321;
    cout<<checkPalindrome(num)<<endl; // Yes
 
    int number = 456;
    cout<<checkPalindrome(number)<<endl; // No
    return 0;
 
}
 
// This code is contributed by shinjanpatra

Java

// Java program to implement the approach
import java.util.*;
 
class GFG {
 
    static String checkPalindrome(int x)
    {
        String convertedNumber = String.valueOf(x);
 
        // reversing the string using StringBuilder
        StringBuilder reverseString = new StringBuilder();
 
        // append a string into StringBuilder input1
        reverseString.append(convertedNumber);
 
        // reverse StringBuilder
        reverseString.reverse();
 
        // comparing the reversed string and the number
        return (reverseString.toString())
                   .equals(convertedNumber)
            ? "Yes"
            : "No";
    }
 
    // Driver code
    public static void main(String[] args)
    {
 
        // Some Testcases...
        int num = 12321;
        System.out.println(checkPalindrome(num)); // Yes
 
        int number = 456;
        System.out.println(checkPalindrome(number)); // No
    }
}
 
// This code is contributed by phasing17

Python3

def checkPalindrome(x):
    convertedNumber = str(x)
    reverseString = convertedNumber[::-1]
    return "Yes" if reverseString == convertedNumber else "No"
 
# Some Testcases...
num = 12321
print(checkPalindrome(num)) # Yes
 
number = 456
print(checkPalindrome(number)) # No
 
# This code is contributed by shinjanpatra

C#

// C# program to implement the approach
using System;
 
class GFG {
 
  static string checkPalindrome(int x)
  {
    string convertedNumber = Convert.ToString(x);
 
    // reversing the string
    string reverseString = convertedNumber;
    char[] charArray = reverseString.ToCharArray();
    Array.Reverse(charArray);
    reverseString = new string(charArray);
 
    // comparing the reversed string and the number
    return reverseString == convertedNumber ? "Yes"
      : "No";
  }
 
  // Driver code
  public static void Main(string[] args)
  {
 
    // Some Testcases...
    int num = 12321;
    Console.WriteLine(checkPalindrome(num)); // Yes
 
    int number = 456;
    Console.WriteLine(checkPalindrome(number)); // No
  }
}
 
// This code is contributed by phasing17

Javascript

function checkPalindrome(x) {
    let convertedNumber = x.toString();
    let reverseString = convertedNumber.split("").reverse().join("");
    return reverseString === convertedNumber ? "Yes" : "No";
}
 
// Some Testcases...
let num = 12321;
console.log(checkPalindrome(num)); // Yes
 
let number = 456;
console.log(checkPalindrome(number)); // No
 
// This code is contributed by Aman Singla....

Java

import java.io.*;
 
class GFG {
    public static void main(String[] args)
    {
        int input1 = 7007;
        String str_input1 = String.valueOf(input1); //conversion of int to string
        String str = new StringBuilder(str_input1).reverse().toString(); // reversing the input string
 
        if (str.equals(str_input1)) //Checking for Palindrome
        {
            System.out.println(input1 + " is Palindrome");
        }
        else
        {
            System.out.println(input1+ " is not Palindrome");
        }
    }
}

C#

// C# implementation of the approach
using System;
using System.Linq;
using System.Collections.Generic;
 
class GFG {
 
  public static void Main(string[] args)
  {
    int input1 = 7007;
    string str_input1 = Convert.ToString(
      input1); // conversion of int to string
    string str = new string(
      str_input1.Reverse()
      .ToArray()); // reversing the input string
 
    if (String.Equals(
      str, str_input1)) // Checking for Palindrome
    {
      Console.WriteLine(input1 + " is Palindrome");
    }
    else {
      Console.WriteLine(input1
                        + " is not Palindrome");
    }
  }
}
 
// This code is contributed to phasing17

C++

// C++ program to check if a number is Palindrome
#include <iostream>
using namespace std;
// Function to check Palindrome
bool checkPalindrome(int n)
{
    int reverse = 0;
    int temp = n;
    while (temp != 0) {
        reverse = (reverse * 10) + (temp % 10);
        temp = temp / 10;
    }
    return (reverse
            == n); // if it is true then it will return 1;
                   // else if false it will return 0;
}
int main()
{
    int n = 7007;
    if (checkPalindrome(n) == 1) {
        cout << "Yes\n";
    }
    else {
        cout << "No\n";
    }
    return 0;
}
// This code is contributed by Suruchi Kumari

Java

/*package whatever //do not write package name here */
 
import java.io.*;
 
class GFG {
  // Java program to check if a number is Palindrome
 
  // Function to check Palindrome
  static boolean checkPalindrome(int n)
  {
    int reverse = 0;
    int temp = n;
    while (temp != 0) {
      reverse = (reverse * 10) + (temp % 10);
      temp = temp / 10;
    }
    return (reverse == n); // if it is true then it will return 1;
    // else if false it will return 0;
  }
 
  // Driver Code
  public static void main(String args[])
  {
    int n = 7007;
    if (checkPalindrome(n) == true) {
      System.out.println("Yes");
    }
    else {
      System.out.println("No");
    }
  }
}
 
// This code is contributed by shinjanpatra

Python3

# Python3 program to check if a number is Palindrome
 
# Function to check Palindrome
def checkPalindrome(n):
 
    reverse = 0
    temp = n
    while (temp != 0):
        reverse = (reverse * 10) + (temp % 10)
        temp = temp // 10
     
    return (reverse == n) # if it is true then it will return 1;
                   # else if false it will return 0;
 
# driver code
n = 7007
if (checkPalindrome(n) == 1):
    print("Yes")
 
else:
    print("No")
 
# This code is contributed by shinjanpatra

C#

// C# program to check if a number is Palindrome
 
using System;
 
class GFG {
 
    // Function to check Palindrome
    static bool checkPalindrome(int n)
    {
        int reverse = 0;
        int temp = n;
        while (temp != 0) {
            reverse = (reverse * 10) + (temp % 10);
            temp = temp / 10;
        }
        return (
            reverse
            == n); // if it is true then it will return 1;
        // else if false it will return 0;
    }
 
    // Driver Code
    public static void Main(string[] args)
    {
        int n = 7007;
        if (checkPalindrome(n) == true) {
            Console.WriteLine("Yes");
        }
        else {
            Console.WriteLine("No");
        }
    }
}
 
// This code is contributed by phasing17

Javascript

<script>
 
// JavaScript program to check if a number is Palindrome
 
// Function to check Palindrome
function checkPalindrome(n)
{
    let reverse = 0;
    let temp = n;
    while (temp != 0) {
        reverse = (reverse * 10) + (temp % 10);
        temp = Math.floor(temp / 10);
    }
    return (reverse == n); // if it is true then it will return 1;
                   // else if false it will return 0;
}
 
// driver code
 
let n = 7007;
if (checkPalindrome(n) == 1) {
    document.write("Yes","</br>");
}
else {
    document.write("No","</br>");
}
 
 
// This code is contributed by shinjanpatra
 
</script>

Publicación traducida automáticamente

Artículo escrito por GeeksforGeeks-1 y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *