Comprobar si un número se puede representar como la suma de dos cubos perfectos consecutivos

Dado un número entero N , la tarea es verificar si este número se puede representar como la suma de dos cubos perfectos consecutivos o no.

Ejemplos:

Entrada: N = 35
Salida:
Explicación:
Ya que, 35 = 2 3 + 3 3 , por lo tanto, la respuesta requerida es Sí.

Entrada: N = 14
Salida: No

Enfoque ingenuo: el enfoque más simple para resolver el problema es iterar desde 1 hasta la raíz cúbica de N y verificar si la suma de los cubos perfectos de dos números consecutivos es igual a N o no. Si es cierto, escriba «Sí». De lo contrario, escriba “No”.

A continuación se muestra la implementación del enfoque anterior:

C++

// C++ Program of the
// above approach
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to check if a number
// can be expressed as the sum of
// cubes of two consecutive numbers
bool isCubeSum(int n)
{
    for (int i = 1; i * i * i <= n; i++) {
        if (i * i * i
                + (i + 1) * (i + 1) * (i + 1)
            == n)
            return true;
    }
    return false;
}
 
// Driver Code
int main()
{
    int n = 35;
 
    if (isCubeSum(n))
        cout << "Yes";
    else
        cout << "No";
}

Java

// Java program of the
// above approach
import java.util.*;
 
class GFG{
 
// Function to check if a number
// can be expressed as the sum of
// cubes of two consecutive numbers
static boolean isCubeSum(int n)
{
    for(int i = 1; i * i * i <= n; i++)
    {
        if (i * i * i + (i + 1) *
              (i + 1) * (i + 1) == n)
            return true;
    }
    return false;
}
 
// Driver Code
public static void main(String[] args)
{
    int n = 35;
 
    if (isCubeSum(n))
        System.out.print("Yes");
    else
        System.out.print("No");
}
}
 
// This code is contributed by Amit Katiyar

Python3

# Python3 program of the
# above approach
 
# Function to check if a number
# can be expressed as the sum of
# cubes of two consecutive numbers
def isCubeSum(n):
     
    for i in range(1, int(pow(n, 1 / 3)) + 1):
        if (i * i * i + (i + 1) *
              (i + 1) * (i + 1) == n):
            return True;
 
    return False;
 
# Driver Code
if __name__ == '__main__':
     
    n = 35;
 
    if (isCubeSum(n)):
        print("Yes");
    else:
        print("No");
 
# This code is contributed by Amit Katiyar

C#

// C# program of the
// above approach
using System;
 
class GFG{
 
// Function to check if a number
// can be expressed as the sum of
// cubes of two consecutive numbers
static bool isCubeSum(int n)
{
    for(int i = 1; i * i * i <= n; i++)
    {
        if (i * i * i + (i + 1) *
              (i + 1) * (i + 1) == n)
            return true;
    }
    return false;
}
 
// Driver Code
public static void Main(String[] args)
{
    int n = 35;
 
    if (isCubeSum(n))
        Console.Write("Yes");
    else
        Console.Write("No");
}
}
 
// This code is contributed by Amit Katiyar

Javascript

<script>
 
// Javascript Program of the
// above approach
 
// Function to check if a number
// can be expressed as the sum of
// cubes of two consecutive numbers
function isCubeSum(n)
{
    for (var i = 1; i * i * i <= n; i++) {
        if (i * i * i
                + (i + 1) * (i + 1) * (i + 1)
            == n)
            return true;
    }
    return false;
}
 
// Driver Code
var n = 35;
if (isCubeSum(n))
    document.write("Yes");
else
    document.write("No");
 
 
</script>
Producción: 

Yes

Enfoque eficiente: el enfoque anterior se puede optimizar en función de las siguientes observaciones:

  • Un número se puede representar como la suma del cubo perfecto de dos números consecutivos si la suma de la raíz cúbica de ambos números consecutivos es igual a N.
  • Esto se puede comprobar mediante la fórmula:

\lfloor \sqrt[3]{N} - 1 \rfloor ^3 + \lfloor \sqrt[3]{N} \rfloor^3

  • Por ejemplo, si N = 35 , entonces compruebe si la siguiente ecuación es igual a N o no:

\lfloor \sqrt[3]{35} - 1 \rfloor ^3 + \lfloor \sqrt[3]{35} \rfloor^3

A continuación se muestra la implementación del enfoque anterior:

C++

// C++ Program to
// implement above approach
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to check that a number
// is the sum of cubes of 2
// consecutive numbers or not
bool isSumCube(int N)
{
    int a = cbrt(N);
    int b = a - 1;
 
    // Condition to check if a
    // number is the sum of cubes of 2
    // consecutive numbers or not
    return ((a * a * a + b * b * b) == N);
}
 
// Driver Code
int main()
{
    int i = 35;
    // Function call
    if (isSumCube(i)) {
        cout << "Yes";
    }
    else {
        cout << "No";
    }
    return 0;
}

Java

// Java program to implement
// above approach
class GFG{
 
// Function to check that a number
// is the sum of cubes of 2
// consecutive numbers or not
static boolean isSumCube(int N)
{
    int a = (int)Math.cbrt(N);
    int b = a - 1;
 
    // Condition to check if a
    // number is the sum of cubes of 2
    // consecutive numbers or not
    return ((a * a * a + b * b * b) == N);
}
 
// Driver Code
public static void main(String[] args)
{
    int i = 35;
     
    // Function call
    if (isSumCube(i))
    {
        System.out.print("Yes");
    }
    else
    {
        System.out.print("No");
    }
}
}
 
// This code is contributed by Amit Katiyar

Python3

# Python3 program to
# implement above approach
 
# Function to check that a number
# is the sum of cubes of 2
# consecutive numbers or not
def isSumCube(N):
 
    a = int(pow(N, 1 / 3))
    b = a - 1
 
    # Condition to check if a
    # number is the sum of cubes of 2
    # consecutive numbers or not
    ans = ((a * a * a + b * b * b) == N)
 
    return ans
 
# Driver Code
i = 35
 
# Function call
if(isSumCube(i)):
    print("Yes")
else:
    print("No")
 
# This code is contributed by Shivam Singh

C#

// C# program to implement
// above approach
using System;
class GFG{
 
// Function to check that a number
// is the sum of cubes of 2
// consecutive numbers or not
static bool isSumCube(int N)
{
  int a = (int)Math.Pow(N, (double) 1 / 3);
  int b = a - 1;
 
  // Condition to check if a
  // number is the sum of cubes of 2
  // consecutive numbers or not
  return ((a * a * a + b * b * b) == N);
}
 
// Driver Code
public static void Main(String[] args)
{
  int i = 35;
   
  // Function call
  if (isSumCube(i))
  {
    Console.Write("Yes");
  }
  else
  {
    Console.Write("No");
  }
}
}
 
// This code is contributed by 29AjayKumar

Javascript

<script>
 
// Javascript program to implement
// above approach   
 
// Function to check that a number
// is the sum of cubes of 2
// consecutive numbers or not
function isSumCube(N)
{
    var a = parseInt(Math.cbrt(N));
    var b = a - 1;
 
    // Condition to check if a
    // number is the sum of cubes of 2
    // consecutive numbers or not
    return ((a * a * a + b * b * b) == N);
}
 
// Driver Code
var i = 35;
 
// Function call
if (isSumCube(i))
{
    document.write("Yes");
}
else
{
    document.write("No");
}
 
// This code is contributed by todaysgaurav
 
</script>
Producción: 

Yes

Tiempo Complejidad: O(1) 
Espacio Auxiliar: O(1) 

Publicación traducida automáticamente

Artículo escrito por spp____ y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *