Consultas de suma de rango basadas en condiciones dadas

Dada una array arr[] de N enteros y la array Queries[][] que consta de Q consultas de la forma {m, a, b} . Para cada consulta, la tarea es encontrar la suma de los elementos de la array de acuerdo con las siguientes condiciones:

  • Si m = 1: encuentre la suma de los elementos de la array en el rango [a, b] .
  • Si m = 2: Reorganice los elementos del arreglo en orden creciente y encuentre la suma de los elementos en el rango [a, b] en el nuevo arreglo.

Ejemplos:

Entrada : arr[] = {6, 4, 2, 7, 2, 7}, Q = 3, Consultas[][3] = {{2, 3, 6}, {1, 3, 4}, {1 , 1, 6}}
Salida : 24 9 28
Explicación :
para la consulta 1:
m es 2, luego la array después de ordenar es arr[] = {2, 2, 4, 6, 7, 7} y la suma del elemento en el rango [3, 6] es 4 + 6 + 7 + 7 = 24.
Para la Consulta 2:
m es 1, entonces la array original es arr[] = {6, 4, 2, 7, 2, 7} y la suma del elemento en el rango [3, 4] es 2 + 7 = 9.
Para la Consulta 3:
m es 1, entonces el arreglo original es arr[] = {6, 4, 2, 7, 2, 7} y la suma del elemento en el rango [1, 6] es 6 + 4 + 2 + 7 + 2 + 7 = 28.

Entrada : arr[] = {5, 5, 2, 3}, Q = 3, Consultas[][10] = {{1, 2, 4}, {2, 1, 4}, {1, 1, 1 }, {2, 1, 4}, {2, 1, 2}, {1, 1, 1}, {1, 3, 3}, {1, 1, 3}, {1, 4, 4}, {1, 2, 2}}
Salida : 10 15 5 15 5 5 2 12 3 5

Enfoque ingenuo: la idea es atravesar las consultas dadas y encontrar la suma de todos los elementos de acuerdo con las condiciones dadas:

  1. Elija la array de acuerdo con la m dada, si m es igual a 1 , elija la array original; de lo contrario, elija la otra array donde se ordenan todos los elementos de la array arr[] .
  2. Ahora calcule la suma de la array entre el rango [a, b] .
  3. Iterar un ciclo sobre el rango para encontrar la suma.
  4. Imprime la suma de cada consulta.

A continuación se muestra la implementación del enfoque anterior: 

C++

// C++ program for the above approach
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to calculate the sum
// between the given range as per
// value of m
int range_sum(vector<int> v, int a,
              int b)
{
    // Stores the sum
    int sum = 0;
 
    // Loop to calculate the sum
    for (int i = a - 1; i < b; i++) {
        sum += v[i];
    }
 
    // Return sum
    return sum;
}
 
// Function to find the sum of elements
// for each query
void findSum(vector<int>& v1, int q,
             int Queries[][3])
{
    // Take a dummy vector
    vector<int> v2;
 
    // Size of vector
    int n = sizeof(v1) / sizeof(int);
 
    // Copying the elements into
    // dummy vector
    for (int i = 0; i < n; i++) {
        v2.push_back(v1[i]);
    }
 
    // Sort the dummy vector
    sort(v2.begin(), v2.end());
 
    // Performs operations
    for (int i = 0; i < q; i++) {
 
        int m = Queries[i][0];
        int a = Queries[i][1];
        int b = Queries[i][2];
 
        if (m == 1) {
 
            // Function Call to find sum
            cout << range_sum(v1, a, b)
                 << ' ';
        }
        else if (m == 2) {
 
            // Function Call to find sum
            cout << range_sum(v2, a, b)
                 << ' ';
        }
    }
}
 
// Driver Code
int main()
{
    // Given arr[]
    vector<int> arr = { 6, 4, 2, 7, 2, 7 };
 
    int Q = 1;
 
    // Given Queries
    int Queries[][3] = { { 2, 3, 6 } };
 
    // Function Call
    findSum(arr, Q, Queries);
 
    return 0;
}

Java

// Java program for the above approach
import java.util.*;
 
class GFG{
 
// Function to calculate the sum
// between the given range as per
// value of m
static int range_sum(Vector<Integer> v, int a,
                                        int b)
{
     
    // Stores the sum
    int sum = 0;
 
    // Loop to calculate the sum
    for(int i = a - 1; i < b; i++)
    {
        sum += v.get(i);
    }
 
    // Return sum
    return sum;
}
 
static int range_sum(int []v, int a,
                     int b)
{
     
    // Stores the sum
    int sum = 0;
     
    // Loop to calculate the sum
    for(int i = a - 1; i < b; i++)
    {
        sum += v[i];
    }
     
    // Return sum
    return sum;
}
 
// Function to find the sum of elements
// for each query
static void findSum(int []v1, int q,
                    int Queries[][])
{
     
    // Take a dummy vector
    Vector<Integer> v2 = new Vector<Integer>();
 
    // Size of vector
    int n = v1.length;
 
    // Copying the elements into
    // dummy vector
    for(int i = 0; i < n; i++)
    {
        v2.add(v1[i]);
    }
 
    // Sort the dummy vector
    Collections.sort(v2);
 
    // Performs operations
    for(int i = 0; i < q; i++)
    {
        int m = Queries[i][0];
        int a = Queries[i][1];
        int b = Queries[i][2];
 
        if (m == 1)
        {
             
            // Function call to find sum
            System.out.print(range_sum(
                v1, a, b) + " ");
        }
        else if (m == 2)
        {
 
            // Function call to find sum
            System.out.print(range_sum(
                v2, a, b) + " ");
        }
    }
}
 
// Driver Code
public static void main(String[] args)
{
     
    // Given arr[]
    int []arr = { 6, 4, 2, 7, 2, 7 };
 
    int Q = 1;
 
    // Given Queries
    int Queries[][] = { { 2, 3, 6 } };
 
    // Function call
    findSum(arr, Q, Queries);
}
}
 
// This code is contributed by 29AjayKumar

Python3

# Python3 program for the above approach
 
# Function to calculate the sum
# between the given range as per
# value of m
def range_sum(v, a, b):
 
    # Stores the sum
    Sum = 0
  
    # Loop to calculate the sum
    for i in range(a - 1, b):
        Sum += v[i]
  
    # Return sum
    return Sum
  
# Function to find the sum of elements
# for each query
def findSum(v1, q, Queries):
 
    # Take a dummy vector
    v2 = []
  
    # Size of vector
    n = len(v1)
  
    # Copying the elements into
    # dummy vector
    for i in range(n):
        v2.append(v1[i])
  
    # Sort the dummy vector
    v2.sort()
  
    # Performs operations
    for i in range(q):
        m = Queries[i][0]
        a = Queries[i][1]
        b = Queries[i][2]
  
        if (m == 1):
  
            # Function call to find sum
            print(range_sum(v1, a, b), end = " ")
             
        elif (m == 2):
  
            # Function call to find sum
            print(range_sum(v2, a, b), end = " ")
 
# Driver code
 
# Given arr[]
arr = [ 6, 4, 2, 7, 2, 7 ]
  
Q = 1
  
# Given Queries
Queries = [ [ 2, 3, 6 ] ]
  
# Function call
findSum(arr, Q, Queries)
 
# This code is contributed divyeshrabadiya07

C#

// C# program for the above approach
using System;
using System.Collections;
using System.Collections.Generic;
using System.Text;
 
class GFG{
     
// Function to calculate the sum
// between the given range as per
// value of m
static int range_sum(ArrayList v, int a,
                                  int b)
{
     
    // Stores the sum
    int sum = 0;
 
    // Loop to calculate the sum
    for(int i = a - 1; i < b; i++)
    {
        sum += (int)v[i];
    }
 
    // Return sum
    return sum;
}
 
// Function to find the sum of elements
// for each query
static void findSum(ArrayList v1, int q,
                    int [,]Queries)
{
     
    // Take a dummy vector
    ArrayList v2 = new ArrayList();
 
    // Size of vector
    int n = v1.Count;
 
    // Copying the elements into
    // dummy vector
    for(int i = 0; i < n; i++)
    {
        v2.Add(v1[i]);
    }
 
    // Sort the dummy vector
    v2.Sort();
 
    // Performs operations
    for(int i = 0; i < q; i++)
    {
        int m = Queries[i, 0];
        int a = Queries[i, 1];
        int b = Queries[i, 2];
     
        if (m == 1)
        {
             
            // Function call to find sum
            Console.Write(range_sum(v1, a, b));
            Console.Write(' ');
        }
        else if (m == 2)
        {
             
            // Function call to find sum
            Console.Write(range_sum(v2, a, b));
            Console.Write(' ');
        }
    }
}
 
// Driver Code
public static void Main(string[] args)
{
     
    // Given arr[]
    ArrayList arr=new ArrayList(){ 6, 4, 2,
                                   7, 2, 7 };
 
    int Q = 1;
 
    // Given Queries
    int [,]Queries = { { 2, 3, 6 } };
 
    // Function call
    findSum(arr, Q, Queries);
}
}
 
// This code is contributed by rutvik_56

Javascript

<script>
 
// Javascript program for the above approach
 
// Function to calculate the sum
// between the given range as per
// value of m
function range_sum(v, a, b)
{
     
    // Stores the sum
    let sum = 0;
      
    // Loop to calculate the sum
    for(let i = a - 1; i < b; i++)
    {
        sum += v[i];
    }
      
    // Return sum
    return sum;
}
 
// Function to find the sum of elements
// for each query
function findSum(v1, q, Queries)
{
     
    // Take a dummy vector
    let v2 = [];
  
    // Size of vector
    let n = v1.length;
  
    // Copying the elements into
    // dummy vector
    for(let i = 0; i < n; i++)
    {
        v2.push(v1[i]);
    }
  
    // Sort the dummy vector
    v2.sort(function(a, b){return a - b;});
  
    // Performs operations
    for(let i = 0; i < q; i++)
    {
        let m = Queries[i][0];
        let a = Queries[i][1];
        let b = Queries[i][2];
  
        if (m == 1)
        {
             
            // Function call to find sum
            document.write(range_sum(
                v1, a, b) + " ");
        }
        else if (m == 2)
        {
  
            // Function call to find sum
            document.write(range_sum(
                v2, a, b) + " ");
        }
    }
}
 
// Driver Code
 
// Given arr[]
let arr = [ 6, 4, 2, 7, 2, 7 ];
let Q = 1;
 
// Given Queries
let Queries = [ [ 2, 3, 6 ] ];
 
// Function call
findSum(arr, Q, Queries);
 
// This code is contributed by avanitrachhadiya2155
 
</script>
Producción: 

24

 

Tiempo Complejidad: O(N 2 )
Espacio Auxiliar: O(N)

Enfoque eficiente: el enfoque anterior se puede optimizar reduciendo un bucle utilizando la array de suma de prefijos . A continuación se muestran los pasos:

  • Cree la otra array brr[] para almacenar los elementos de la array dada arr[] en orden ordenado.
  • Encuentre la suma del prefijo de las arrays arr[] y brr[] .
  • Recorra las consultas dadas y si la consulta es del tipo 1, la suma del elemento en el rango [a, b] viene dada por:

Arr[b – 1] – Arr[a – 2]

  • Si la consulta es del tipo 2, la suma del elemento en el rango [a, b] viene dada por:

brr[b – 1] – arr[a – 2]

A continuación se muestra la implementación del enfoque anterior:

C++

// C++ program for the above approach
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to calculate the sum
// between the given range as per
// value of m
int range_sum(vector<int>& arr, int a,
              int b)
{
    // Stores the sum
    int sum = 0;
 
    // Condition for a to print the
    // sum between ranges [a, b]
    if (a - 2 < 0)
        sum = arr[b - 1];
    else
        sum = arr[b - 1] - arr[a - 2];
 
    // Return sum
    return sum;
}
 
// Function to precalculate the sum
// of both the vectors
void precompute_sum(vector<int>& arr,
                    vector<int>& brr)
{
    int N = (int)arr.size();
 
    // Make Prefix sum array
    for (int i = 1; i <= N; i++) {
        arr[i] = arr[i] + arr[i - 1];
        brr[i] = brr[i] + brr[i - 1];
    }
}
 
// Function to compute the result
// for each query
void find_sum(vector<int>& arr, int q,
              int Queries[][3])
{
    // Take a dummy vector and copy
    // the element of arr in brr
    vector<int> brr(arr);
 
    int N = (int)arr.size();
 
    // Sort the dummy vector
    sort(brr.begin(), brr.end());
 
    // Compute prefix sum of both vectors
    precompute_sum(arr, brr);
 
    // Performs operations
    for (int i = 0; i < q; i++) {
 
        int m = Queries[i][0];
        int a = Queries[i][1];
        int b = Queries[i][2];
 
        if (m == 1) {
 
            // Function Call to find sum
            cout << range_sum(arr, a, b)
                 << ' ';
        }
        else if (m == 2) {
 
            // Function Call to find sum
            cout << range_sum(brr, a, b)
                 << ' ';
        }
    }
}
 
// Driver Code
int main()
{
    // Given arr[]
    vector<int> arr = { 0, 6, 4, 2, 7, 2, 7 };
 
    // Number of queries
    int Q = 1;
 
    // Given queries
    int Queries[][3] = { { 2, 3, 6 } };
 
    // Function Call
    find_sum(arr, Q, Queries);
 
    return 0;
}

Java

// Java program for the above approach
import java.util.*;
  
class GFG{
     
// Function to calculate the sum
// between the given range as per
// value of m
static int range_sum(int []arr, int a,
                     int b)
{
     
    // Stores the sum
    int sum = 0;
  
    // Condition for a to print the
    // sum between ranges [a, b]
    if (a - 2 < 0)
        sum = arr[b - 1];
    else
        sum = arr[b - 1] - arr[a - 2];
  
    // Return sum
    return sum;
}
  
// Function to precalculate the sum
// of both the vectors
static void precompute_sum(int []arr,
                           int []brr)
{
    int N = (int)arr.length;
  
    // Make Prefix sum array
    for(int i = 1; i < N; i++)
    {
        arr[i] = arr[i] + arr[i - 1];
        brr[i] = brr[i] + brr[i - 1];
    }
}
  
// Function to compute the result
// for each query
static void find_sum(int []arr, int q,
                     int Queries[][])
{
     
    // Take a dummy vector and copy
    // the element of arr in brr
    int []brr = arr.clone();
  
    int N = (int)arr.length;
  
    // Sort the dummy vector
    Arrays.sort(brr);
  
    // Compute prefix sum of both vectors
    precompute_sum(arr, brr);
  
    // Performs operations
    for(int i = 0; i < q; i++)
    {
        int m = Queries[i][0];
        int a = Queries[i][1];
        int b = Queries[i][2];
  
        if (m == 1)
        {
             
            // Function call to find sum
            System.out.print(range_sum(
                arr, a, b) + " ");
        }
        else if (m == 2)
        {
             
            // Function call to find sum
            System.out.print(range_sum(
                brr, a, b) + " ");
        }
    }
}
  
// Driver Code
public static void main(String[] args)
{
     
    // Given arr[]
    int []arr = { 0, 6, 4, 2, 7, 2, 7 };
     
    // Number of queries
    int Q = 1;
  
    // Given queries
    int Queries[][] = { { 2, 3, 6 } };
  
    // Function call
    find_sum(arr, Q, Queries);
}
}
  
// This code is contributed by Amit Katiyar

Python3

# Python3 program for
# the above approach
 
# Function to calculate
# the sum between the
# given range as per value
# of m
def range_sum(arr, a, b):
 
    # Stores the sum
    sum = 0
 
    # Condition for a to
    # print the sum between
    # ranges [a, b]
    if (a - 2 < 0):
        sum = arr[b - 1]
    else:
        sum = (arr[b - 1] -
               arr[a - 2])
 
    # Return sum
    return sum
 
# Function to precalculate
# the sum of both the vectors
def precompute_sum(arr, brr):
 
    N = len(arr)
 
    # Make Prefix sum array
    for i in range(1, N):
        arr[i] = arr[i] + arr[i - 1]
        brr[i] = brr[i] + brr[i - 1]
 
# Function to compute
# the result for each query
def find_sum(arr, q, Queries):
 
    # Take a dummy vector
    # and copy the element
    # of arr in brr
    brr = arr.copy()
 
    N = len(arr)
 
    # Sort the dummy vector
    brr.sort()
 
    # Compute prefix sum of
    # both vectors
    precompute_sum(arr, brr)
 
    # Performs operations
    for i in range(q):
 
        m = Queries[i][0]
        a = Queries[i][1]
        b = Queries[i][2]
 
        if (m == 1):
 
            # Function Call to
            # find sum
            print (range_sum(arr,
                             a, b),
                   end = ' ')
         
        elif (m == 2):
 
            # Function Call to
            # find sum
            print (range_sum(brr,
                             a, b),
                   end = ' ')
 
# Driver Code
if __name__ == "__main__":
   
    # Given arr[]
    arr = [0, 6, 4,
           2, 7, 2, 7]
 
    # Number of queries
    Q = 1
 
    # Given queries
    Queries = [[2, 3, 6]]
 
    # Function Call
    find_sum(arr, Q, Queries)
 
# This code is contributed by Chitranayal

C#

// C# program for
// the above approach
using System;
class GFG{
     
// Function to calculate the sum
// between the given range as per
// value of m
static int range_sum(int []arr,
                     int a,
                     int b)
{
  // Stores the sum
  int sum = 0;
 
  // Condition for a to print the
  // sum between ranges [a, b]
  if (a - 2 < 0)
    sum = arr[b - 1];
  else
    sum = arr[b - 1] - arr[a - 2];
 
  // Return sum
  return sum;
}
  
// Function to precalculate the sum
// of both the vectors
static void precompute_sum(int []arr,
                           int []brr)
{
  int N = (int)arr.Length;
 
  // Make Prefix sum array
  for(int i = 1; i < N; i++)
  {
    arr[i] = arr[i] + arr[i - 1];
    brr[i] = brr[i] + brr[i - 1];
  }
}
  
// Function to compute the result
// for each query
static void find_sum(int []arr, int q,
                     int [,]Queries)
{   
  // Take a dummy vector and copy
  // the element of arr in brr
  int []brr = new int[arr.Length];
  arr.CopyTo(brr, 0);
 
  int N = (int)arr.Length;
 
  // Sort the dummy vector
  Array.Sort(brr);
 
  // Compute prefix sum of both vectors
  precompute_sum(arr, brr);
 
  // Performs operations
  for(int i = 0; i < q; i++)
  {
    int m = Queries[i, 0];
    int a = Queries[i, 1];
    int b = Queries[i, 2];
 
    if (m == 1)
    {
      // Function call to find sum
      Console.Write(range_sum(
                    arr, a, b) + " ");
    }
    else if (m == 2)
    {
      // Function call to find sum
      Console.Write(range_sum(
                    brr, a, b) + " ");
    }
  }
}
  
// Driver Code
public static void Main(String[] args)
{
  // Given []arr
  int []arr = {0, 6, 4, 2, 7, 2, 7};
 
  // Number of queries
  int Q = 1;
 
  // Given queries
  int [,]Queries = {{2, 3, 6}};
 
  // Function call
  find_sum(arr, Q, Queries);
}
}
 
// This code is contributed by 29AjayKumar

Javascript

<script>
// Javascript program for the above approach
 
// Function to calculate the sum
// between the given range as per
// value of m
function range_sum(arr,a,b)
{
    // Stores the sum
    let sum = 0;
   
    // Condition for a to print the
    // sum between ranges [a, b]
    if (a - 2 < 0)
        sum = arr[b - 1];
    else
        sum = arr[b - 1] - arr[a - 2];
   
    // Return sum
    return sum;
}
 
// Function to precalculate the sum
// of both the vectors
function precompute_sum(arr,brr)
{
    let N = arr.length;
   
    // Make Prefix sum array
    for(let i = 1; i < N; i++)
    {
        arr[i] = arr[i] + arr[i - 1];
        brr[i] = brr[i] + brr[i - 1];
    }
}
 
// Function to compute the result
// for each query
function find_sum(arr,q,Queries)
{
    // Take a dummy vector and copy
    // the element of arr in brr
    let brr = [...arr];
   
    let N = arr.length;
   
    // Sort the dummy vector
    brr.sort(function(a,b){return a-b;});
   
    // Compute prefix sum of both vectors
    precompute_sum(arr, brr);
   
    // Performs operations
    for(let i = 0; i < q; i++)
    {
        let m = Queries[i][0];
        let a = Queries[i][1];
        let b = Queries[i][2];
   
        if (m == 1)
        {
              
            // Function call to find sum
            document.write(range_sum(
                arr, a, b) + " ");
        }
        else if (m == 2)
        {
              
            // Function call to find sum
            document.write(range_sum(
                brr, a, b) + " ");
        }
    }
}
 
// Driver Code
let arr=[0, 6, 4, 2, 7, 2, 7];
// Number of queries
let Q = 1;
 
// Given queries
let Queries = [[ 2, 3, 6 ]];
 
// Function call
find_sum(arr, Q, Queries);
 
 
// This code is contributed by rag2127
</script>
Producción: 

19

 

Complejidad de tiempo: O(N*log N)
Espacio auxiliar: O(N)

Publicación traducida automáticamente

Artículo escrito por harsh2608 y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *