Dada una array arr[] de N elementos, la tarea es responder Q consultas, cada una de las cuales tiene dos números enteros L y R. Para cada consulta, la tarea es encontrar el número de elementos en el subarreglo arr[L…R] cuya suma de dígitos es par.
Ejemplos:
Entrada: arr[] = {7, 3, 19, 13, 5, 4}
consulta = { {1, 5}, {0, 1} }
Salida: 3
Explicación:
Consulta 1: Los elementos 19, 13 y 4 tienen par suma de dígitos en el subarreglo: {3, 9, 13, 5, 4}.
Consulta 2: ningún elemento tiene una suma par en el subarreglo: {7, 3}Entrada: arr[] = {0, 1, 2, 3, 4, 5, 6, 7}
consulta = { 3, 5 }
Salida: 1
Ya hemos discutido este enfoque: consultas para el recuento de elementos de suma de dígitos pares en el rango dado usando el árbol de segmentos
Enfoque: (usando el algoritmo de MO )
La idea es preprocesar todas las consultas para que el resultado de una consulta se pueda usar en la siguiente consulta.
- Ordene todas las consultas de manera que las consultas con valores L de 0 a √n – 1 se junten, seguidas de las consultas de √n a 2×√n – 1 , y así sucesivamente. Todas las consultas dentro de un bloque se clasifican en orden creciente de valores R.
- Procese todas las consultas una por una y aumente el recuento de elementos de suma de dígitos pares y almacene el resultado en la estructura.
- Deje que count_even almacene el recuento de elementos de suma de dígitos pares en la consulta anterior.
- Elimine elementos adicionales de la consulta anterior y agregue nuevos elementos para la consulta actual. Por ejemplo, si la consulta anterior fue [0, 8] y la consulta actual es [3, 9], elimine los elementos arr[0], arr[1] y arr[2] y agregue arr[9].
- Para mostrar los resultados, ordene las consultas en el orden en que se proporcionaron.
Funciones auxiliares:
agregar elements()
- Si el elemento actual tiene una suma de dígitos pares, aumente el recuento de count_even .
Eliminando elements()
- Si el elemento actual tiene una suma de dígitos pares, disminuya el recuento de count_even .
El siguiente código es la implementación del enfoque anterior:
C++
// C++ program to count of even // digit sum elements in the given // range using MO's algorithm #include <bits/stdc++.h> using namespace std; #define MAX 100000 // Variable to represent block size. // This is made global so compare() // of sort can use it. int block; // Structure to represent a query range struct Query { // Starting index int L; // Ending index int R; // Index of query int index; // Count of even // even digit sum int even; }; // To store the count of // even digit sum int count_even; // Function used to sort all queries so that // all queries of the same block are arranged // together and within a block, queries are // sorted in increasing order of R values. bool compare(Query x, Query y) { // Different blocks, sort by block. if (x.L / block != y.L / block) return x.L / block < y.L / block; // Same block, sort by R value return x.R < y.R; } // Function used to sort all queries // in order of their index value so that // results of queries can be printed // in same order as of input bool compare1(Query x, Query y) { return x.index < y.index; } // Function to find the digit sum // for a number int digitSum(int num) { int sum = 0; while (num) { sum += (num % 10); num /= 10; } return sum; } // Function to Add elements // of current range void add(int currL, int a[]) { // If digit sum of a[currL] // is even then increment if (digitSum(a[currL]) % 2 == 0) count_even++; } // Function to remove elements // of previous range void remove(int currR, int a[]) { // If digit sum of a[currL] // is even then decrement if (digitSum(a[currR]) % 2 == 0) count_even--; } // Function to generate // the result of queries void queryResults(int a[], int n, Query q[], int m) { // Initialize number of // even digit sum to 0 count_even = 0; // Find block size block = (int)sqrt(n); // Sort all queries so that queries of // same blocks are arranged together. sort(q, q + m, compare); // Initialize current L, current R and // current result int currL = 0, currR = 0; for (int i = 0; i < m; i++) { // L and R values of current range int L = q[i].L, R = q[i].R; // Add Elements of current range while (currR <= R) { add(currR, a); currR++; } while (currL > L) { add(currL - 1, a); currL--; } // Remove element of previous range while (currR > R + 1) { remove(currR - 1, a); currR--; } while (currL < L) { remove(currL, a); currL++; } q[i].even = count_even; } } // Function to display the results of // queries in their initial order void printResults(Query q[], int m) { sort(q, q + m, compare1); for (int i = 0; i < m; i++) { cout << q[i].even << endl; } } // Driver Code int main() { int arr[] = { 5, 2, 3, 1, 4, 8, 10, 12 }; int n = sizeof(arr) / sizeof(arr[0]); Query q[] = { { 1, 3, 0, 0 }, { 0, 4, 1, 0 }, { 4, 7, 2, 0 } }; int m = sizeof(q) / sizeof(q[0]); queryResults(arr, n, q, m); printResults(q, m); return 0; }
Java
// Java program to count of even // digit sum elements in the given // range using MO's algorithm import java.util.Arrays; import java.util.Collections; import java.util.Comparator; class GFG{ static int MAX = 100000; // Variable to represent block size. // This is made global so compare() // of sort can use it. static int block; // Structure to represent a query range static class Query { // Starting index int L; // Ending index int R; // Index of query int index; // Count of even // even digit sum int even; public Query(int l, int r, int index, int even) { this.L = l; this.R = r; this.index = index; this.even = even; } }; // To store the count of // even digit sum static int count_even; // Function to find the digit sum // for a number static int digitSum(int num) { int sum = 0; while (num > 0) { sum += (num % 10); num /= 10; } return sum; } // Function to Add elements // of current range static void add(int currL, int a[]) { // If digit sum of a[currL] // is even then increment if (digitSum(a[currL]) % 2 == 0) count_even++; } // Function to remove elements // of previous range static void remove(int currR, int a[]) { // If digit sum of a[currL] // is even then decrement if (digitSum(a[currR]) % 2 == 0) count_even--; } // Function to generate // the result of queries static void queryResults(int a[], int n, Query q[], int m) { // Initialize number of // even digit sum to 0 count_even = 0; // Find block size block = (int) Math.sqrt(n); // Sort all queries so that queries of // same blocks are arranged together. Collections.sort(Arrays.asList(q), new Comparator<Query>() { // Function used to sort all queries so that // all queries of the same block are arranged // together and within a block, queries are // sorted in increasing order of R values. public int compare(Query x, Query y) { // Different blocks, sort by block. if (x.L / block != y.L / block) return x.L / block - y.L / block; // Same block, sort by R value return x.R - y.R; } }); // Initialize current L, current R and // current result int currL = 0, currR = 0; for(int i = 0; i < m; i++) { // L and R values of current range int L = q[i].L, R = q[i].R; // Add Elements of current range while (currR <= R) { add(currR, a); currR++; } while (currL > L) { add(currL - 1, a); currL--; } // Remove element of previous range while (currR > R + 1) { remove(currR - 1, a); currR--; } while (currL < L) { remove(currL, a); currL++; } q[i].even = count_even; } } // Function to display the results of // queries in their initial order static void printResults(Query q[], int m) { Collections.sort(Arrays.asList(q), new Comparator<Query>() { // Function used to sort all queries // in order of their index value so that // results of queries can be printed // in same order as of input public int compare(Query x, Query y) { return x.index - y.index; } }); for(int i = 0; i < m; i++) { System.out.println(q[i].even); } } // Driver Code public static void main(String[] args) { int arr[] = { 5, 2, 3, 1, 4, 8, 10, 12 }; int n = arr.length; Query q[] = { new Query(1, 3, 0, 0), new Query(0, 4, 1, 0), new Query(4, 7, 2, 0) }; int m = q.length; queryResults(arr, n, q, m); printResults(q, m); } } // This code is contributed by sanjeev2552
Python3
# Python program to count of even # digit sum elements in the given # range using MO's algorithm import math import functools MAX = 100000 arr = [5, 2, 3, 1, 4, 8, 10, 12] n = len(arr) # Variable to represent block size. # This is made here so compare() # of sort can use it. block = int(math.sqrt(n)) # Class to represent a query range class Query: def __init__(self, l, r, index, even): self.L = l # Starting index self.R = r # Ending index self.index = index # Index of query self.even = even # Count of even digit sum # Function used to sort all queries so that # all queries of the same block are arranged # together and within a block, queries are # sorted in increasing order of R values. def compare(x, y): # Different blocks, sort by block. if x.L / block != y.L / block: return x.L / block < y.L / block else: # Same block, sort by R value return x.R < y.R # Function to find the digit sum # for a number def digitSum(num): sum = 0 while num > 0: sum += (num % 10) num //= 10 return sum # Function to Add elements # of current range def add(currL, a, count_even): # If digit sum of a[currL] # is even then increment if digitSum(a[currL]) % 2 == 0: count_even += 1 return count_even # Function to remove elements # of previous range def remove(currR, a, count_even): # If digit sum of a[currL] # is even then decrement if digitSum(a[currR]) % 2 == 0: count_even -= 1 return count_even # Function to generate # the result of queries def queryResults(a, n, q, m): # Initialize number of # even digit sum to 0 count_even = 0 # Find block size block = int(math.sqrt(n)) # Sort all queries so that queries of # same blocks are arranged together. q.sort(key=functools.cmp_to_key(compare)) # Initialize current L, current R and # current result currL = 0 currR = 0 for i in range(m): # L and R values of current range L = q[i].L R = q[i].R # Add Elements of current range while currR <= R: count_even = add(currR, a, count_even) currR += 1 while currL > L: count_even = add(currL - 1, a, count_even) currL -= 1 # Remove element of previous range while currR > R + 1: count_even = remove(currR - 1, a, count_even) currR -= 1 while currL < L: count_even = remove(currL, a, count_even) currL += 1 q[i].even = count_even # Function to display the results of # queries in their initial order def printResults(q, m): q.sort(key=lambda x: x.index) for i in range(m): print(q[i].even) # Driver Code q = [Query(1, 3, 0, 0), Query(0, 4, 1, 0), Query(4, 7, 2, 0)] m = len(q) queryResults(arr, n, q, m) printResults(q, m) # This code is contributed by Tapesh (tapeshdua420)
1 2 2
Complejidad temporal: O(Q x √N)
Publicación traducida automáticamente
Artículo escrito por saurabhshadow y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA