Dado un árbol binario, la tarea es encontrar la distancia entre dos claves en un árbol binario, no se dan punteros principales. La distancia entre dos Nodes es el número mínimo de aristas que se deben atravesar para llegar a un Node desde otro.
Este problema ya se discutió en una publicación anterior, pero utiliza tres recorridos del árbol binario, uno para encontrar el ancestro común más bajo (LCA) de dos Nodes (let A y B) y luego dos recorridos para encontrar la distancia entre LCA y A y LCA y B que tiene una complejidad temporal O(n). En esta publicación, se discutirá un método que requiere el tiempo O(log(n)) para encontrar LCA de dos Nodes.
La distancia entre dos Nodes se puede obtener en términos del ancestro común más bajo. La siguiente es la fórmula.
Dist(n1, n2) = Dist(root, n1) + Dist(root, n2) - 2*Dist(root, lca) 'n1' and 'n2' are the two given keys 'root' is root of given Binary Tree. 'lca' is lowest common ancestor of n1 and n2 Dist(n1, n2) is the distance between n1 and n2.
La fórmula anterior también se puede escribir como:
Dist(n1, n2) = Level[n1] + Level[n2] - 2*Level[lca]
Este problema se puede dividir en:
- Encontrar niveles de cada Node
- Encontrar el recorrido de Euler del árbol binario
- Árbol de segmentos de construcción para LCA,
Estos pasos se explican a continuación:
- Encuentre los niveles de cada Node aplicando un recorrido de orden de nivel .
- Encuentre el LCA de dos Nodes en un árbol binario en O (logn) almacenando el recorrido de Euler del árbol binario en una array y calculando otras dos arrays con la ayuda de los niveles de cada Node y el recorrido de Euler.
Estos pasos se muestran a continuación:
(I) Primero, encuentre el Tour de Euler del árbol binario.
- (II) Luego, almacene los niveles de cada Node en la array de Euler en una array diferente.
- (III) Luego, almacene las primeras ocurrencias de todos los Nodes del árbol binario en la array de Euler. H almacena los índices de los Nodes de la array de Euler, por lo que el rango de consulta para encontrar el mínimo se puede minimizar y optimizar aún más el tiempo de consulta.
- Luego construya un árbol de segmentos en la array L y tome los valores bajos y altos de la array H que nos darán las primeras apariciones de, digamos, dos Nodes (A y B). Luego, consultamos el árbol de segmentos para encontrar el valor mínimo, digamos X en el rango ( H[A] a H[B] ). Luego usamos el índice del valor X como índice para la array de Euler para obtener LCA , es decir, Euler [índice (X)].
Sea A = 8 y B = 5.
(I) H[8] = 1 y H[5] =2
(II) Consultando en el árbol de segmentos, obtenemos el valor mínimo en la array L entre 1 y 2 como X=0, index=7
(III) Entonces, LCA= Euler[7], es decir, LCA = 1.- Finalmente, aplicamos la fórmula de distancia discutida anteriormente para obtener la distancia entre dos Nodes.
C++
// C++ program to find distance between // two nodes for multiple queries #include <bits/stdc++.h> #define MAX 100001 using namespace std; /* A tree node structure */ struct Node { int data; struct Node* left; struct Node* right; }; /* Utility function to create a new Binary Tree node */ struct Node* newNode(int data) { struct Node* temp = new struct Node; temp->data = data; temp->left = temp->right = NULL; return temp; } // Array to store level of each node int level[MAX]; // Utility Function to store level of all nodes void FindLevels(struct Node* root) { if (!root) return; // queue to hold tree node with level queue<pair<struct Node*, int> > q; // let root node be at level 0 q.push({ root, 0 }); pair<struct Node*, int> p; // Do level Order Traversal of tree while (!q.empty()) { p = q.front(); q.pop(); // Node p.first is on level p.second level[p.first->data] = p.second; // If left child exits, put it in queue // with current_level +1 if (p.first->left) q.push({ p.first->left, p.second + 1 }); // If right child exists, put it in queue // with current_level +1 if (p.first->right) q.push({ p.first->right, p.second + 1 }); } } // Stores Euler Tour int Euler[MAX]; // index in Euler array int idx = 0; // Find Euler Tour void eulerTree(struct Node* root) { // store current node's data Euler[++idx] = root->data; // If left node exists if (root->left) { // traverse left subtree eulerTree(root->left); // store parent node's data Euler[++idx] = root->data; } // If right node exists if (root->right) { // traverse right subtree eulerTree(root->right); // store parent node's data Euler[++idx] = root->data; } } // checks for visited nodes int vis[MAX]; // Stores level of Euler Tour int L[MAX]; // Stores indices of first occurrence // of nodes in Euler tour int H[MAX]; // Preprocessing Euler Tour for finding LCA void preprocessEuler(int size) { for (int i = 1; i <= size; i++) { L[i] = level[Euler[i]]; // If node is not visited before if (vis[Euler[i]] == 0) { // Add to first occurrence H[Euler[i]] = i; // Mark it visited vis[Euler[i]] = 1; } } } // Stores values and positions pair<int, int> seg[4 * MAX]; // Utility function to find minimum of // pair type values pair<int, int> min(pair<int, int> a, pair<int, int> b) { if (a.first <= b.first) return a; else return b; } // Utility function to build segment tree pair<int, int> buildSegTree(int low, int high, int pos) { if (low == high) { seg[pos].first = L[low]; seg[pos].second = low; return seg[pos]; } int mid = low + (high - low) / 2; buildSegTree(low, mid, 2 * pos); buildSegTree(mid + 1, high, 2 * pos + 1); seg[pos] = min(seg[2 * pos], seg[2 * pos + 1]); } // Utility function to find LCA pair<int, int> LCA(int qlow, int qhigh, int low, int high, int pos) { if (qlow <= low && qhigh >= high) return seg[pos]; if (qlow > high || qhigh < low) return { INT_MAX, 0 }; int mid = low + (high - low) / 2; return min(LCA(qlow, qhigh, low, mid, 2 * pos), LCA(qlow, qhigh, mid + 1, high, 2 * pos + 1)); } // Function to return distance between // two nodes n1 and n2 int findDistance(int n1, int n2, int size) { // Maintain original Values int prevn1 = n1, prevn2 = n2; // Get First Occurrence of n1 n1 = H[n1]; // Get First Occurrence of n2 n2 = H[n2]; // Swap if low > high if (n2 < n1) swap(n1, n2); // Get position of minimum value int lca = LCA(n1, n2, 1, size, 1).second; // Extract value out of Euler tour lca = Euler[lca]; // return calculated distance return level[prevn1] + level[prevn2] - 2 * level[lca]; } void preProcessing(Node* root, int N) { // Build Tree eulerTree(root); // Store Levels FindLevels(root); // Find L and H array preprocessEuler(2 * N - 1); // Build segment Tree buildSegTree(1, 2 * N - 1, 1); } /* Driver function to test above functions */ int main() { int N = 8; // Number of nodes /* Constructing tree given in the above figure */ Node* root = newNode(1); root->left = newNode(2); root->right = newNode(3); root->left->left = newNode(4); root->left->right = newNode(5); root->right->left = newNode(6); root->right->right = newNode(7); root->right->left->right = newNode(8); // Function to do all preprocessing preProcessing(root, N); cout << "Dist(4, 5) = " << findDistance(4, 5, 2 * N - 1) << "\n"; cout << "Dist(4, 6) = " << findDistance(4, 6, 2 * N - 1) << "\n"; cout << "Dist(3, 4) = " << findDistance(3, 4, 2 * N - 1) << "\n"; cout << "Dist(2, 4) = " << findDistance(2, 4, 2 * N - 1) << "\n"; cout << "Dist(8, 5) = " << findDistance(8, 5, 2 * N - 1) << "\n"; return 0; }
Java
// Java program to find distance between // two nodes for multiple queries import java.io.*; import java.util.*; class GFG { static int MAX = 100001; /* A tree node structure */ static class Node { int data; Node left, right; Node(int data) { this.data = data; this.left = this.right = null; } } static class Pair<T, V> { T first; V second; Pair() { } Pair(T first, V second) { this.first = first; this.second = second; } } // Array to store level of each node static int[] level = new int[MAX]; // Utility Function to store level of all nodes static void findLevels(Node root) { if (root == null) return; // queue to hold tree node with level Queue<Pair<Node, Integer>> q = new LinkedList<>(); // let root node be at level 0 q.add(new Pair<Node, Integer>(root, 0)); Pair<Node, Integer> p = new Pair<Node, Integer>(); // Do level Order Traversal of tree while (!q.isEmpty()) { p = q.poll(); // Node p.first is on level p.second level[p.first.data] = p.second; // If left child exits, put it in queue // with current_level +1 if (p.first.left != null) q.add(new Pair<Node, Integer>(p.first.left, p.second + 1)); // If right child exists, put it in queue // with current_level +1 if (p.first.right != null) q.add(new Pair<Node, Integer>(p.first.right, p.second + 1)); } } // Stores Euler Tour static int[] Euler = new int[MAX]; // index in Euler array static int idx = 0; // Find Euler Tour static void eulerTree(Node root) { // store current node's data Euler[++idx] = root.data; // If left node exists if (root.left != null) { // traverse left subtree eulerTree(root.left); // store parent node's data Euler[++idx] = root.data; } // If right node exists if (root.right != null) { // traverse right subtree eulerTree(root.right); // store parent node's data Euler[++idx] = root.data; } } // checks for visited nodes static int[] vis = new int[MAX]; // Stores level of Euler Tour static int[] L = new int[MAX]; // Stores indices of first occurrence // of nodes in Euler tour static int[] H = new int[MAX]; // Preprocessing Euler Tour for finding LCA static void preprocessEuler(int size) { for (int i = 1; i <= size; i++) { L[i] = level[Euler[i]]; // If node is not visited before if (vis[Euler[i]] == 0) { // Add to first occurrence H[Euler[i]] = i; // Mark it visited vis[Euler[i]] = 1; } } } // Stores values and positions @SuppressWarnings("unchecked") static Pair<Integer, Integer>[] seg = (Pair<Integer, Integer>[]) new Pair[4 * MAX]; // Utility function to find minimum of // pair type values static Pair<Integer, Integer> min(Pair<Integer, Integer> a, Pair<Integer, Integer> b) { if (a.first <= b.first) return a; return b; } // Utility function to build segment tree static Pair<Integer, Integer> buildSegTree(int low, int high, int pos) { if (low == high) { seg[pos].first = L[low]; seg[pos].second = low; return seg[pos]; } int mid = low + (high - low) / 2; buildSegTree(low, mid, 2 * pos); buildSegTree(mid + 1, high, 2 * pos + 1); seg[pos] = min(seg[2 * pos], seg[2 * pos + 1]); return seg[pos]; } // Utility function to find LCA static Pair<Integer, Integer> LCA(int qlow, int qhigh, int low, int high, int pos) { if (qlow <= low && qhigh >= high) return seg[pos]; if (qlow > high || qhigh < low) return new Pair<Integer, Integer> (Integer.MAX_VALUE, 0); int mid = low + (high - low) / 2; return min(LCA(qlow, qhigh, low, mid, 2 * pos), LCA(qlow, qhigh, mid + 1, high, 2 * pos + 1)); } // Function to return distance between // two nodes n1 and n2 static int findDistance(int n1, int n2, int size) { // Maintain original Values int prevn1 = n1, prevn2 = n2; // Get First Occurrence of n1 n1 = H[n1]; // Get First Occurrence of n2 n2 = H[n2]; // Swap if low > high if (n2 < n1) { int temp = n1; n1 = n2; n2 = temp; } // Get position of minimum value int lca = LCA(n1, n2, 1, size, 1).second; // Extract value out of Euler tour lca = Euler[lca]; // return calculated distance return level[prevn1] + level[prevn2] - 2 * level[lca]; } static void preProcessing(Node root, int N) { for (int i = 0; i < 4 * MAX; i++) { seg[i] = new Pair<>(); } // Build Tree eulerTree(root); // Store Levels findLevels(root); // Find L and H array preprocessEuler(2 * N - 1); // Build segment Tree buildSegTree(1, 2 * N - 1, 1); } // Driver Code public static void main(String[] args) { // Number of nodes int N = 8; /* Constructing tree given in the above figure */ Node root = new Node(1); root.left = new Node(2); root.right = new Node(3); root.left.left = new Node(4); root.left.right = new Node(5); root.right.left = new Node(6); root.right.right = new Node(7); root.right.left.right = new Node(8); // Function to do all preprocessing preProcessing(root, N); System.out.println("Dist(4, 5) = " + findDistance(4, 5, 2 * N - 1)); System.out.println("Dist(4, 6) = " + findDistance(4, 6, 2 * N - 1)); System.out.println("Dist(3, 4) = " + findDistance(3, 4, 2 * N - 1)); System.out.println("Dist(2, 4) = " + findDistance(2, 4, 2 * N - 1)); System.out.println("Dist(8, 5) = " + findDistance(8, 5, 2 * N - 1)); } } // This code is contributed by // sanjeev2552
Python3
# Python3 program to find distance between # two nodes for multiple queries from collections import deque from sys import maxsize as INT_MAX MAX = 100001 # A tree node structure class Node: def __init__(self, data): self.data = data self.left = None self.right = None # Array to store level of each node level = [0] * MAX # Utility Function to store level of all nodes def findLevels(root: Node): global level if root is None: return # queue to hold tree node with level q = deque() # let root node be at level 0 q.append((root, 0)) # Do level Order Traversal of tree while q: p = q[0] q.popleft() # Node p.first is on level p.second level[p[0].data] = p[1] # If left child exits, put it in queue # with current_level +1 if p[0].left: q.append((p[0].left, p[1] + 1)) # If right child exists, put it in queue # with current_level +1 if p[0].right: q.append((p[0].right, p[1] + 1)) # Stores Euler Tour Euler = [0] * MAX # index in Euler array idx = 0 # Find Euler Tour def eulerTree(root: Node): global Euler, idx idx += 1 # store current node's data Euler[idx] = root.data # If left node exists if root.left: # traverse left subtree eulerTree(root.left) idx += 1 # store parent node's data Euler[idx] = root.data # If right node exists if root.right: # traverse right subtree eulerTree(root.right) idx += 1 # store parent node's data Euler[idx] = root.data # checks for visited nodes vis = [0] * MAX # Stores level of Euler Tour L = [0] * MAX # Stores indices of the first occurrence # of nodes in Euler tour H = [0] * MAX # Preprocessing Euler Tour for finding LCA def preprocessEuler(size: int): global L, H, vis for i in range(1, size + 1): L[i] = level[Euler[i]] # If node is not visited before if vis[Euler[i]] == 0: # Add to first occurrence H[Euler[i]] = i # Mark it visited vis[Euler[i]] = 1 # Stores values and positions seg = [0] * (4 * MAX) for i in range(4 * MAX): seg[i] = [0, 0] # Utility function to find minimum of # pair type values def minPair(a: list, b: list) -> list: if a[0] <= b[0]: return a else: return b # Utility function to build segment tree def buildSegTree(low: int, high: int, pos: int) -> list: if low == high: seg[pos][0] = L[low] seg[pos][1] = low return seg[pos] mid = low + (high - low) // 2 buildSegTree(low, mid, 2 * pos) buildSegTree(mid + 1, high, 2 * pos + 1) seg[pos] = min(seg[2 * pos], seg[2 * pos + 1]) # Utility function to find LCA def LCA(qlow: int, qhigh: int, low: int, high: int, pos: int) -> list: if qlow <= low and qhigh >= high: return seg[pos] if qlow > high or qhigh < low: return [INT_MAX, 0] mid = low + (high - low) // 2 return minPair(LCA(qlow, qhigh, low, mid, 2 * pos), LCA(qlow, qhigh, mid + 1, high, 2 * pos + 1)) # Function to return distance between # two nodes n1 and n2 def findDistance(n1: int, n2: int, size: int) -> int: # Maintain original Values prevn1 = n1 prevn2 = n2 # Get First Occurrence of n1 n1 = H[n1] # Get First Occurrence of n2 n2 = H[n2] # Swap if low>high if n2 < n1: n1, n2 = n2, n1 # Get position of minimum value lca = LCA(n1, n2, 1, size, 1)[1] # Extract value out of Euler tour lca = Euler[lca] # return calculated distance return level[prevn1] + level[prevn2] - 2 * level[lca] def preProcessing(root: Node, N: int): # Build Tree eulerTree(root) # Store Levels findLevels(root) # Find L and H array preprocessEuler(2 * N - 1) # Build sparse table buildSegTree(1, 2 * N - 1, 1) # Driver Code if __name__ == "__main__": # Number of nodes N = 8 # Constructing tree given in the above figure root = Node(1) root.left = Node(2) root.right = Node(3) root.left.left = Node(4) root.left.right = Node(5) root.right.left = Node(6) root.right.right = Node(7) root.right.left.right = Node(8) # Function to do all preprocessing preProcessing(root, N) print("Dist(4, 5) =", findDistance(4, 5, 2 * N - 1)) print("Dist(4, 6) =", findDistance(4, 6, 2 * N - 1)) print("Dist(3, 4) =", findDistance(3, 4, 2 * N - 1)) print("Dist(2, 4) =", findDistance(2, 4, 2 * N - 1)) print("Dist(8, 5) =", findDistance(8, 5, 2 * N - 1)) # This code is contributed by # sanjeev2552
C#
// C# program to find distance between // two nodes for multiple queries using System; using System.Collections.Generic; class GFG { static int MAX = 100001; /* A tree node structure */ public class Node { public int data; public Node left, right; public Node(int data) { this.data = data; this.left = this.right = null; } } class Pair<T, V> { public T first; public V second; public Pair() { } public Pair(T first, V second) { this.first = first; this.second = second; } } // Array to store level of each node static int[] level = new int[MAX]; // Utility Function to store level of all nodes static void findLevels(Node root) { if (root == null) return; // queue to hold tree node with level List<Pair<Node, int>> q = new List<Pair<Node, int>>(); // let root node be at level 0 q.Add(new Pair<Node, int>(root, 0)); Pair<Node, int> p = new Pair<Node, int>(); // Do level Order Traversal of tree while (q.Count != 0) { p = q[0]; q.RemoveAt(0); // Node p.first is on level p.second level[p.first.data] = p.second; // If left child exits, put it in queue // with current_level +1 if (p.first.left != null) q.Add(new Pair<Node, int> (p.first.left, p.second + 1)); // If right child exists, put it in queue // with current_level +1 if (p.first.right != null) q.Add(new Pair<Node, int> (p.first.right, p.second + 1)); } } // Stores Euler Tour static int[] Euler = new int[MAX]; // index in Euler array static int idx = 0; // Find Euler Tour static void eulerTree(Node root) { // store current node's data Euler[++idx] = root.data; // If left node exists if (root.left != null) { // traverse left subtree eulerTree(root.left); // store parent node's data Euler[++idx] = root.data; } // If right node exists if (root.right != null) { // traverse right subtree eulerTree(root.right); // store parent node's data Euler[++idx] = root.data; } } // checks for visited nodes static int[] vis = new int[MAX]; // Stores level of Euler Tour static int[] L = new int[MAX]; // Stores indices of first occurrence // of nodes in Euler tour static int[] H = new int[MAX]; // Preprocessing Euler Tour for finding LCA static void preprocessEuler(int size) { for (int i = 1; i <= size; i++) { L[i] = level[Euler[i]]; // If node is not visited before if (vis[Euler[i]] == 0) { // Add to first occurrence H[Euler[i]] = i; // Mark it visited vis[Euler[i]] = 1; } } } // Stores values and positions static Pair<int, int>[] seg = new Pair<int, int>[4 * MAX]; // Utility function to find minimum of // pair type values static Pair<int, int> min(Pair<int, int> a, Pair<int, int> b) { if (a.first <= b.first) return a; return b; } // Utility function to build segment tree static Pair<int, int> buildSegTree(int low, int high, int pos) { if (low == high) { seg[pos].first = L[low]; seg[pos].second = low; return seg[pos]; } int mid = low + (high - low) / 2; buildSegTree(low, mid, 2 * pos); buildSegTree(mid + 1, high, 2 * pos + 1); seg[pos] = min(seg[2 * pos], seg[2 * pos + 1]); return seg[pos]; } // Utility function to find LCA static Pair<int, int> LCA(int qlow, int qhigh, int low, int high, int pos) { if (qlow <= low && qhigh >= high) return seg[pos]; if (qlow > high || qhigh < low) return new Pair<int, int>(int.MaxValue, 0); int mid = low + (high - low) / 2; return min(LCA(qlow, qhigh, low, mid, 2 * pos), LCA(qlow, qhigh, mid + 1, high, 2 * pos + 1)); } // Function to return distance between // two nodes n1 and n2 static int findDistance(int n1, int n2, int size) { // Maintain original Values int prevn1 = n1, prevn2 = n2; // Get First Occurrence of n1 n1 = H[n1]; // Get First Occurrence of n2 n2 = H[n2]; // Swap if low > high if (n2 < n1) { int temp = n1; n1 = n2; n2 = temp; } // Get position of minimum value int lca = LCA(n1, n2, 1, size, 1).second; // Extract value out of Euler tour lca = Euler[lca]; // return calculated distance return level[prevn1] + level[prevn2] - 2 * level[lca]; } static void preProcessing(Node root, int N) { for (int i = 0; i < 4 * MAX; i++) { seg[i] = new Pair<int,int>(); } // Build Tree eulerTree(root); // Store Levels findLevels(root); // Find L and H array preprocessEuler(2 * N - 1); // Build segment Tree buildSegTree(1, 2 * N - 1, 1); } // Driver Code public static void Main(String[] args) { // Number of nodes int N = 8; /* Constructing tree given in the above figure */ Node root = new Node(1); root.left = new Node(2); root.right = new Node(3); root.left.left = new Node(4); root.left.right = new Node(5); root.right.left = new Node(6); root.right.right = new Node(7); root.right.left.right = new Node(8); // Function to do all preprocessing preProcessing(root, N); Console.WriteLine("Dist(4, 5) = " + findDistance(4, 5, 2 * N - 1)); Console.WriteLine("Dist(4, 6) = " + findDistance(4, 6, 2 * N - 1)); Console.WriteLine("Dist(3, 4) = " + findDistance(3, 4, 2 * N - 1)); Console.WriteLine("Dist(2, 4) = " + findDistance(2, 4, 2 * N - 1)); Console.WriteLine("Dist(8, 5) = " + findDistance(8, 5, 2 * N - 1)); } } // This code is contributed by Rajput-Ji
Salida :
Dist(4, 5) = 2 Dist(4, 6) = 4 Dist(3, 4) = 3 Dist(2, 4) = 1 Dist(8, 5) = 5
Complejidad de tiempo: O(Log N)
Complejidad de espacio: O(N)
Consultas para encontrar la distancia entre dos Nodes de un árbol binario – método O(1)
Publicación traducida automáticamente
Artículo escrito por Abhishek rajput y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA