Dadas n consultas del rango de formulario [L, R] . La tarea es encontrar la máxima diferencia entre dos números primos en el rango de cada consulta. Si no hay números primos en el rango, imprima 0. Todos los rangos están por debajo de 100005.
Ejemplos:
Input : Q = 3 query1 = [2, 5] query2 = [2, 2] query3 = [24, 28] Output : 3 0 0 In first query, 2 and 5 are prime number in the range with maximum difference which is 3. In second there is only 1 prime number in range, so output is 0. And in third query, there is no prime number in the given range so the output is 0.
La idea es calcular números primos usando la criba de Eratóstenes junto con algunos cálculos previos.
A continuación se muestran los pasos para resolver la pregunta:
Paso 1: Encuentra los números primos usando el algoritmo Tamiz de Eratóstenes.
Paso 2: Haga una array, digamos prefijo[] , donde prefijo[i] representa el mayor número primo menor o igual a i.
Paso 3: Haz una array, digamos sufijo[] , donde sufijo[i] representa el número primo más pequeño mayor o igual que i.
Paso 4: Ahora, para cada consulta que tenga [L, R], haga lo siguiente:
if (prefix[R] R) return 0; else return prefix[R] - suffix[L];
A continuación se muestra la implementación de este enfoque:
C++
// CPP program to find maximum differences between // two prime numbers in given ranges #include <bits/stdc++.h> using namespace std; #define MAX 100005 // Declare global variables to assign heap memory and avoid // stack overflow bool prime[MAX]; int prefix[MAX], suffix[MAX]; // Precompute Sieve, Prefix array, Suffix array void precompute(int prefix[], int suffix[]) { memset(prime, true, sizeof(prime)); // Sieve of Eratosthenes for (int i = 2; i * i < MAX; i++) { if (prime[i]) { for (int j = i * i; j < MAX; j += i) prime[j] = false; } } prefix[1] = 1; suffix[MAX - 1] = 1e9 + 7; // Precomputing Prefix array. for (int i = 2; i < MAX; i++) { if (prime[i]) prefix[i] = i; else prefix[i] = prefix[i - 1]; } // Precompute Suffix array. for (int i = MAX - 1; i > 1; i--) { if (prime[i]) suffix[i] = i; else suffix[i] = suffix[i + 1]; } } // Function to solve each query int query(int prefix[], int suffix[], int L, int R) { if (prefix[R] < L || suffix[L] > R) return 0; else return prefix[R] - suffix[L]; } // Driven Program int main() { int q = 3; int L[] = { 2, 2, 24 }; int R[] = { 5, 2, 28 }; precompute(prefix, suffix); for (int i = 0; i < q; i++) cout << query(prefix, suffix, L[i], R[i]) << endl; return 0; }
Java
// Java program to find maximum differences between // two prime numbers in given ranges public class GFG { final static int MAX = 100005; // Precompute Sieve, Prefix array, Suffix array static void precompute(int prefix[], int suffix[]) { boolean prime[] = new boolean[MAX]; for (int i = 0; i < MAX; i++) { prime[i] = true; } // Sieve of Eratosthenes for (int i = 2; i * i < MAX; i++) { if (prime[i]) { for (int j = i * i; j < MAX; j += i) { prime[j] = false; } } } prefix[1] = 1; suffix[MAX - 1] = (int)1e9 + 7; // Precomputing Prefix array. for (int i = 2; i < MAX; i++) { if (prime[i]) { prefix[i] = i; } else { prefix[i] = prefix[i - 1]; } } // Precompute Suffix array. for (int i = MAX - 2; i > 1; i--) { if (prime[i]) { suffix[i] = i; } else { suffix[i] = suffix[i + 1]; } } } // Function to solve each query static int query(int prefix[], int suffix[], int L, int R) { if (prefix[R] < L || suffix[L] > R) { return 0; } else { return prefix[R] - suffix[L]; } } // Driven Program public static void main(String[] args) { int q = 3; int L[] = { 2, 2, 24 }; int R[] = { 5, 2, 28 }; int prefix[] = new int[MAX], suffix[] = new int[MAX]; precompute(prefix, suffix); for (int i = 0; i < q; i++) { System.out.println( query(prefix, suffix, L[i], R[i])); } } } /*This code is contributed by Rajput-Ji*/
Python3
# Python 3 program to find maximum # differences between two prime numbers # in given ranges from math import sqrt MAX = 100005 # Precompute Sieve, Prefix array, Suffix array def precompute(prefix, suffix): prime = [True for i in range(MAX)] # Sieve of Eratosthenes k = int(sqrt(MAX)) for i in range(2, k, 1): if (prime[i]): for j in range(i * i, MAX, i): prime[j] = False prefix[1] = 1 suffix[MAX - 1] = int(1e9 + 7) # Precomputing Prefix array. for i in range(2, MAX, 1): if (prime[i]): prefix[i] = i else: prefix[i] = prefix[i - 1] # Precompute Suffix array. i = MAX - 2 while(i > 1): if (prime[i]): suffix[i] = i else: suffix[i] = suffix[i + 1] i -= 1 # Function to solve each query def query(prefix, suffix, L, R): if (prefix[R] < L or suffix[L] > R): return 0 else: return prefix[R] - suffix[L] # Driver Code if __name__ == '__main__': q = 3 L = [2, 2, 24] R = [5, 2, 28] prefix = [0 for i in range(MAX)] suffix = [0 for i in range(MAX)] precompute(prefix, suffix) for i in range(0, q, 1): print(query(prefix, suffix, L[i], R[i])) # This code is contributed by # Surendra_Gangwar
C#
// C# program to find maximum differences between // two prime numbers in given ranges using System; public class GFG { static readonly int MAX = 100005; // Precompute Sieve, Prefix array, Suffix array static void precompute(int[] prefix, int[] suffix) { bool[] prime = new bool[MAX]; for (int i = 0; i < MAX; i++) { prime[i] = true; } // Sieve of Eratosthenes for (int i = 2; i * i < MAX; i++) { if (prime[i]) { for (int j = i * i; j < MAX; j += i) { prime[j] = false; } } } prefix[1] = 1; suffix[MAX - 1] = (int)1e9 + 7; // Precomputing Prefix array. for (int i = 2; i < MAX; i++) { if (prime[i]) { prefix[i] = i; } else { prefix[i] = prefix[i - 1]; } } // Precompute Suffix array. for (int i = MAX - 2; i > 1; i--) { if (prime[i]) { suffix[i] = i; } else { suffix[i] = suffix[i + 1]; } } } // Function to solve each query static int query(int[] prefix, int[] suffix, int L, int R) { if (prefix[R] < L || suffix[L] > R) { return 0; } else { return prefix[R] - suffix[L]; } } // Driven Program public static void Main() { int q = 3; int[] L = { 2, 2, 24 }; int[] R = { 5, 2, 28 }; int[] prefix = new int[MAX]; int[] suffix = new int[MAX]; precompute(prefix, suffix); for (int i = 0; i < q; i++) { Console.WriteLine( query(prefix, suffix, L[i], R[i])); } } } /*This code is contributed by 29AjayKumar*/
PHP
<?php // PHP program to find maximum differences // between two prime numbers in given ranges $MAX = 100005; // Precompute Sieve, Prefix array, // Suffix array function precompute(&$prefix, &$suffix) { global $MAX; $prime = array_fill(0, $MAX, true); // Sieve of Eratosthenes for ($i = 2; $i * $i < $MAX; $i++) { if ($prime[$i]) { for ($j = $i * $i; $j < $MAX; $j += $i) $prime[$j] = false; } } $prefix[1] = 1; $suffix[$MAX - 1] = 1e9 + 7; // Precomputing Prefix array. for ($i = 2; $i < $MAX; $i++) { if ($prime[$i]) $prefix[$i] = $i; else $prefix[$i] = $prefix[$i - 1]; } // Precompute Suffix array. for ($i = $MAX - 1; $i > 1; $i--) { if ($prime[$i]) $suffix[$i] = $i; else $suffix[$i] = $suffix[$i + 1]; } } // Function to solve each query function query($prefix, $suffix, $L, $R) { if ($prefix[$R] < $L || $suffix[$L] > $R) return 0; else return $prefix[$R] - $suffix[$L]; } // Driver Code $q = 3; $L = array( 2, 2, 24 ); $R = array( 5, 2, 28 ); $prefix = array_fill(0, $MAX + 1, 0); $suffix = array_fill(0, $MAX + 1, 0); precompute($prefix, $suffix); for ($i = 0; $i < $q; $i++) echo query($prefix, $suffix, $L[$i], $R[$i]) . "\n"; // This code is contributed by mits ?>
Javascript
<script> // JavaScript program to find maximum // differences between two prime // numbers in given ranges let MAX = 100005; // Precompute Sieve, Prefix array, Suffix array function precompute(prefix, suffix) { let prime = []; for(let i = 0; i < MAX; i++) { prime[i] = true; } // Sieve of Eratosthenes for(let i = 2; i * i < MAX; i++) { if (prime[i]) { for(let j = i * i; j < MAX; j += i) { prime[j] = false; } } } prefix[1] = 1; suffix[MAX - 1] = 1e9 + 7; // Precomputing Prefix array. for(let i = 2; i < MAX; i++) { if (prime[i]) { prefix[i] = i; } else { prefix[i] = prefix[i - 1]; } } // Precompute Suffix array. for(let i = MAX - 2; i > 1; i--) { if (prime[i]) { suffix[i] = i; } else { suffix[i] = suffix[i + 1]; } } } // Function to solve each query function query(prefix, suffix, L, R) { if (prefix[R] < L || suffix[L] > R) { return 0; } else { return prefix[R] - suffix[L]; } } // Driver Code let q = 3; let L = [ 2, 2, 24 ]; let R = [ 5, 2, 28 ]; let prefix = [], suffix = []; precompute(prefix, suffix); for(let i = 0; i < q; i++) { document.write(query(prefix, suffix, L[i], R[i]) + "<br/>"); } // This code is contributed by sanjoy_62 </script>
Producción:
3 0 0