Consultas para OR bit a bit en la array dada

Dada una array N * N mat[][] que consta de enteros no negativos y algunas consultas que consisten en la esquina superior izquierda e inferior derecha de la subarray, la tarea es encontrar el OR bit a bit de todos los elementos de la subarray dada en cada consulta.
Ejemplos: 
 

Entrada: mat[][] = { 
{1, 2, 3}, 
{4, 5, 6}, 
{7, 8, 9}}, 
q[] = {{1, 1, 1, 1}, { 1, 2, 2, 2}} 
Salida: 

15 
Consulta 1: Solo el elemento en la subarray es 5. 
Consulta 2: 6 O 9 = 15
Entrada: mat[][] = { 
{12, 23, 13} , 
{41, 15, 46}, 
{75, 82, 123}}, 
q[] = {{0, 0, 2, 2}, {1, 1, 2, 1}} 
Salida: 
127 
95 
 

Enfoque ingenuo: iterar a través de la subarray y encontrar el OR bit a bit de todos los números en ese rango. Esto tomará O(n 2 ) tiempo para cada consulta en el peor de los casos.
Enfoque eficiente: si observamos los números enteros como un número binario, podemos ver fácilmente que la condición para que se establezca el i – ésimo bit de nuestra respuesta es que se establezca el i -ésimo bit de al menos un entero en la subarray. 
Entonces, calcularemos el conteo de prefijos para cada bit. Usaremos esto para encontrar el número de enteros en la subarray con i -ésimo conjunto de bits. Si no es cero, también se establecerá el i -ésimo bit de nuestra respuesta. 
Para esto, crearemos una array 3d, prefix_count[][][] donde prefix_count[i][x][y] almacenará el recuento de todos los elementos de la subarray con la esquina superior izquierda en {0, 0} y la esquina inferior derecha en {x, y} y el i -ésimo conjunto de bits. Consulte 
este artículo para comprender prefix_count en caso de array.
A continuación se muestra la implementación del enfoque anterior: 
 

C++

// C++ implementation of the approach
#include <bits/stdc++.h>
#define bitscount 32
#define n 3
using namespace std;
 
// Array to store bit-wise
// prefix count
int prefix_count[bitscount][n][n];
 
// Function to find the prefix sum
void findPrefixCount(int arr[][n])
{
 
    // Loop for each bit
    for (int i = 0; i < bitscount; i++) {
 
        // Loop to find prefix-count
        // for each row
        for (int j = 0; j < n; j++) {
            prefix_count[i][j][0] = ((arr[j][0] >> i) & 1);
            for (int k = 1; k < n; k++) {
                prefix_count[i][j][k] = ((arr[j][k] >> i) & 1);
                prefix_count[i][j][k] += prefix_count[i][j][k - 1];
            }
        }
    }
 
    // Finding column-wise prefix
    // count
    for (int i = 0; i < bitscount; i++)
        for (int j = 1; j < n; j++)
            for (int k = 0; k < n; k++)
                prefix_count[i][j][k] += prefix_count[i][j - 1][k];
}
 
// Function to return the result for a query
int rangeOr(int x1, int y1, int x2, int y2)
{
 
    // To store the answer
    int ans = 0;
 
    // Loop for each bit
    for (int i = 0; i < bitscount; i++) {
 
        // To store the number of variables
        // with ith bit set
        int p;
        if (x1 == 0 and y1 == 0)
            p = prefix_count[i][x2][y2];
        else if (x1 == 0)
            p = prefix_count[i][x2][y2]
                - prefix_count[i][x2][y1 - 1];
        else if (y1 == 0)
            p = prefix_count[i][x2][y2]
                - prefix_count[i][x1 - 1][y2];
        else
            p = prefix_count[i][x2][y2]
                - prefix_count[i][x1 - 1][y2]
                - prefix_count[i][x2][y1 - 1]
                + prefix_count[i][x1 - 1][y1 - 1];
 
        // If count of variables with ith bit
        // set is greater than 0
        if (p != 0)
            ans = (ans | (1 << i));
    }
 
    return ans;
}
 
// Driver code
int main()
{
    int arr[][n] = { { 1, 2, 3 },
                     { 4, 5, 6 },
                     { 7, 8, 9 } };
 
    findPrefixCount(arr);
 
    int queries[][4] = { { 1, 1, 1, 1 }, { 1, 2, 2, 2 } };
    int q = sizeof(queries) / sizeof(queries[0]);
 
    for (int i = 0; i < q; i++)
        cout << rangeOr(queries[i][0],
                        queries[i][1],
                        queries[i][2],
                        queries[i][3])
             << endl;
 
    return 0;
}

Java

// Java implementation of the approach
 
class GFG
{
 
    final static int bitscount = 32 ;
    final static int n = 3 ;
 
    // Array to store bit-wise
    // prefix count
    static int prefix_count[][][] = new int [bitscount][n][n];
     
    // Function to find the prefix sum
    static void findPrefixCount(int arr[][])
    {
     
        // Loop for each bit
        for (int i = 0; i < bitscount; i++)
        {
     
            // Loop to find prefix-count
            // for each row
            for (int j = 0; j < n; j++)
            {
                prefix_count[i][j][0] = ((arr[j][0] >> i) & 1);
                for (int k = 1; k < n; k++)
                {
                    prefix_count[i][j][k] = ((arr[j][k] >> i) & 1);
                    prefix_count[i][j][k] += prefix_count[i][j][k - 1];
                }
            }
        }
     
        // Finding column-wise prefix
        // count
        for (int i = 0; i < bitscount; i++)
            for (int j = 1; j < n; j++)
                for (int k = 0; k < n; k++)
                    prefix_count[i][j][k] += prefix_count[i][j - 1][k];
    }
     
    // Function to return the result for a query
    static int rangeOr(int x1, int y1, int x2, int y2)
    {
     
        // To store the answer
        int ans = 0;
     
        // Loop for each bit
        for (int i = 0; i < bitscount; i++)
        {
     
            // To store the number of variables
            // with ith bit set
            int p;
            if (x1 == 0 && y1 == 0)
                p = prefix_count[i][x2][y2];
            else if (x1 == 0)
                p = prefix_count[i][x2][y2]
                    - prefix_count[i][x2][y1 - 1];
            else if (y1 == 0)
                p = prefix_count[i][x2][y2]
                    - prefix_count[i][x1 - 1][y2];
            else
                p = prefix_count[i][x2][y2]
                    - prefix_count[i][x1 - 1][y2]
                    - prefix_count[i][x2][y1 - 1]
                    + prefix_count[i][x1 - 1][y1 - 1];
     
            // If count of variables with ith bit
            // set is greater than 0
            if (p != 0)
                ans = (ans | (1 << i));
        }
     
        return ans;
    }
     
    // Driver code
    public static void main (String[] args)
    {
        int arr[][] = { { 1, 2, 3 },
                        { 4, 5, 6 },
                        { 7, 8, 9 } };
     
        findPrefixCount(arr);
     
        int queries[][] = { { 1, 1, 1, 1 }, { 1, 2, 2, 2 } };
        int q = queries.length;
     
        for (int i = 0; i < q; i++)
            System.out.println( rangeOr(queries[i][0],
                            queries[i][1],
                            queries[i][2],
                            queries[i][3]) );
    }
}
 
// This code is contributed by AnkitRai

Python3

# Python 3 implementation of the approach
bitscount = 32
n = 3
# Array to store bit-wise
# prefix count
prefix_count = [[[0 for i in range(n)] for j in range(n)] for k in range(bitscount)]
 
# Function to find the prefix sum
def findPrefixCount(arr):
    # Loop for each bit
    for i in range(bitscount):
        # Loop to find prefix-count
        # for each row
        for j in range(n):
            prefix_count[i][j][0] = ((arr[j][0] >> i) & 1)
            for k in range(1,n):
                prefix_count[i][j][k] = ((arr[j][k] >> i) & 1)
                prefix_count[i][j][k] += prefix_count[i][j][k - 1]
 
    # Finding column-wise prefix
    # count
    for i in range(bitscount):
        for j in range(1,n):
            for k in range(n):
                prefix_count[i][j][k] += prefix_count[i][j - 1][k]
 
# Function to return the result for a query
def rangeOr(x1, y1, x2, y2):
    # To store the answer
    ans = 0
 
    # Loop for each bit
    for i in range(bitscount):
        # To store the number of variables
        # with ith bit set
        if (x1 == 0 and y1 == 0):
            p = prefix_count[i][x2][y2]
        elif (x1 == 0):
            p = prefix_count[i][x2][y2] - prefix_count[i][x2][y1 - 1]
        elif (y1 == 0):
            p = prefix_count[i][x2][y2] - prefix_count[i][x1 - 1][y2]
        else:
            p = prefix_count[i][x2][y2] - prefix_count[i][x1 - 1][y2] - prefix_count[i][x2][y1 - 1] + prefix_count[i][x1 - 1][y1 - 1];
 
        # If count of variables with ith bit
        # set is greater than 0
        if (p != 0):
            ans = (ans | (1 << i))
 
    return ans
 
# Driver code
if __name__ == '__main__':
    arr =  [[1, 2, 3],
            [4, 5, 6],
            [7, 8, 9]]
 
    findPrefixCount(arr)
    queries = [[1, 1, 1, 1],
                        [1, 2, 2, 2]]
    q = len(queries)
 
    for i in range(q):
        print(rangeOr(queries[i][0],queries[i][1],queries[i][2],queries[i][3]))
         
# This code is contributed by
# Surendra_Gangwar

C#

// C# implementation of the approach
using System;
     
class GFG
{
 
    static int bitscount = 32 ;
    static int n = 3 ;
 
    // Array to store bit-wise
    // prefix count
    static int [,,]prefix_count = new int [bitscount,n,n];
     
    // Function to find the prefix sum
    static void findPrefixCount(int [,]arr)
    {
     
        // Loop for each bit
        for (int i = 0; i < bitscount; i++)
        {
     
            // Loop to find prefix-count
            // for each row
            for (int j = 0; j < n; j++)
            {
                prefix_count[i,j,0] = ((arr[j,0] >> i) & 1);
                for (int k = 1; k < n; k++)
                {
                    prefix_count[i, j, k] = ((arr[j, k] >> i) & 1);
                    prefix_count[i, j, k] += prefix_count[i, j, k - 1];
                }
            }
        }
     
        // Finding column-wise prefix
        // count
        for (int i = 0; i < bitscount; i++)
            for (int j = 1; j < n; j++)
                for (int k = 0; k < n; k++)
                    prefix_count[i, j, k] += prefix_count[i, j - 1, k];
    }
     
    // Function to return the result for a query
    static int rangeOr(int x1, int y1, int x2, int y2)
    {
     
        // To store the answer
        int ans = 0;
     
        // Loop for each bit
        for (int i = 0; i < bitscount; i++)
        {
     
            // To store the number of variables
            // with ith bit set
            int p;
            if (x1 == 0 && y1 == 0)
                p = prefix_count[i, x2, y2];
            else if (x1 == 0)
                p = prefix_count[i, x2, y2]
                    - prefix_count[i, x2, y1 - 1];
            else if (y1 == 0)
                p = prefix_count[i, x2, y2]
                    - prefix_count[i, x1 - 1, y2];
            else
                p = prefix_count[i, x2, y2]
                    - prefix_count[i, x1 - 1, y2]
                    - prefix_count[i, x2, y1 - 1]
                    + prefix_count[i, x1 - 1, y1 - 1];
     
            // If count of variables with ith bit
            // set is greater than 0
            if (p != 0)
                ans = (ans | (1 << i));
        }
     
        return ans;
    }
     
    // Driver code
    public static void Main (String[] args)
    {
        int [,]arr = { { 1, 2, 3 },
                        { 4, 5, 6 },
                        { 7, 8, 9 } };
     
        findPrefixCount(arr);
     
        int [,]queries = { { 1, 1, 1, 1 }, { 1, 2, 2, 2 } };
        int q = queries.GetLength(0);
     
        for (int i = 0; i < q; i++)
            Console.WriteLine( rangeOr(queries[i,0],
                            queries[i,1],
                            queries[i,2],
                            queries[i,3]) );
    }
}
 
/* This code contributed by PrinciRaj1992 */

Javascript

<script>
 
// Javascript implementation of the approach
 
const bitscount = 32;
const n = 3;
 
// Array to store bit-wise
// prefix count
let prefix_count = new Array(bitscount);
for (let i = 0; i < bitscount; i++) {
    prefix_count[i] = new Array(n);
    for (let j = 0; j < n; j++)
        prefix_count[i][j] = new Array(n);
}
 
// Function to find the prefix sum
function findPrefixCount(arr)
{
 
    // Loop for each bit
    for (let i = 0; i < bitscount; i++)
    {
 
        // Loop to find prefix-count
        // for each row
        for (let j = 0; j < n; j++) {
            prefix_count[i][j][0] =
            ((arr[j][0] >> i) & 1);
            for (let k = 1; k < n; k++)
            {
                prefix_count[i][j][k] =
                ((arr[j][k] >> i) & 1);
                prefix_count[i][j][k] +=
                prefix_count[i][j][k - 1];
            }
        }
    }
 
    // Finding column-wise prefix
    // count
    for (let i = 0; i < bitscount; i++)
        for (let j = 1; j < n; j++)
            for (let k = 0; k < n; k++)
                prefix_count[i][j][k] +=
                prefix_count[i][j - 1][k];
}
 
// Function to return the result for a query
function rangeOr(x1, y1, x2, y2)
{
 
    // To store the answer
    let ans = 0;
 
    // Loop for each bit
    for (let i = 0; i < bitscount; i++) {
 
        // To store the number of variables
        // with ith bit set
        let p;
        if (x1 == 0 && y1 == 0)
            p = prefix_count[i][x2][y2];
        else if (x1 == 0)
            p = prefix_count[i][x2][y2]
                - prefix_count[i][x2][y1 - 1];
        else if (y1 == 0)
            p = prefix_count[i][x2][y2]
                - prefix_count[i][x1 - 1][y2];
        else
            p = prefix_count[i][x2][y2]
                - prefix_count[i][x1 - 1][y2]
                - prefix_count[i][x2][y1 - 1]
                + prefix_count[i][x1 - 1][y1 - 1];
 
        // If count of variables with ith bit
        // set is greater than 0
        if (p != 0)
            ans = (ans | (1 << i));
    }
 
    return ans;
}
 
// Driver code
    let arr = [ [ 1, 2, 3 ],
                     [ 4, 5, 6 ],
                     [ 7, 8, 9 ] ];
 
    findPrefixCount(arr);
 
    let queries = [ [ 1, 1, 1, 1 ], [ 1, 2, 2, 2 ] ];
    let q = queries.length;
 
    for (let i = 0; i < q; i++)
        document.write(rangeOr(queries[i][0],
                        queries[i][1],
                        queries[i][2],
                        queries[i][3]) + "<br>");
 
</script>
Producción: 

5
15

 

La complejidad del tiempo para el cálculo previo es O(n 2 ) y cada consulta se puede responder en O(1)

Espacio Auxiliar: O(n 2 )
 

Publicación traducida automáticamente

Artículo escrito por DivyanshuShekhar1 y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *