Cuente las inversiones en una permutación de los primeros N números naturales

Dada una array , arr[] de tamaño N que denota una permutación de números de 1 a N , la tarea es contar el número de inversiones en la array
Nota: dos elementos de array a[i] y a[j] forman una inversión si a[i] > a[j] e i < j.

Ejemplos:

Entrada: arr[] = {2, 3, 1, 5, 4}
Salida: 3
Explicación: La array dada tiene 3 inversiones: (2, 1), (3, 1) , (5, 4).

Entrada: arr[] = {3, 1, 2}
Salida: 2
Explicación: La array dada tiene 2 inversiones: (3, 1), (3, 2).

Se han discutido diferentes métodos para resolver el conteo de inversión en los siguientes artículos:  

Enfoque: este problema se puede resolver utilizando la búsqueda binaria . Siga los pasos a continuación para resolver el problema:

  • Almacene los números en el rango [1, N] en orden creciente en un vector, V .
  • Inicializa una variable, ans como 0 para almacenar el número de inversiones en la array, arr[] .
  • Iterar en el rango [0, N-1] usando la variable i
  • Imprime el valor de ans como resultado.

A continuación se muestra la implementación del enfoque anterior:

C++14

// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to count number of inversions in
// a permutation of first N natural numbers
int countInversions(int arr[], int n)
{
    vector<int> v;
 
    // Store array elements in sorted order
    for (int i = 1; i <= n; i++) {
        v.push_back(i);
    }
 
    // Store the count of inversions
    int ans = 0;
 
    // Traverse the array
    for (int i = 0; i < n; i++) {
 
        // Store the index of first
        // occurrence of arr[i] in vector V
        auto itr = lower_bound(
            v.begin(), v.end(), arr[i]);
 
        // Add count of smaller elements
        // than current element
        ans += itr - v.begin();
 
        // Erase current element from
        // vector and go to next index
        v.erase(itr);
    }
 
    // Print the result
    cout << ans;
 
    return 0;
}
 
// Driver Code
int main()
{
 
    // Given Input
    int arr[] = { 2, 3, 1, 5, 4 };
    int n = sizeof(arr) / sizeof(arr[0]);
 
    // Function Call
    countInversions(arr, n);
 
    return 0;
}

Java

// Java program for the above approach
import java.util.Vector;
 
class GFG{
 
// Function to count number of inversions in
// a permutation of first N natural numbers
static void countInversions(int arr[], int n)
{
    Vector<Integer> v = new Vector<>();
 
    // Store array elements in sorted order
    for(int i = 1; i <= n; i++)
    {
        v.add(i);
    }
 
    // Store the count of inversions
    int ans = 0;
 
    // Traverse the array
    for(int i = 0; i < n; i++)
    {
         
        // Store the index of first
        // occurrence of arr[i] in vector V
        int itr = v.indexOf(arr[i]);
 
        // Add count of smaller elements
        // than current element
        ans += itr;
 
        // Erase current element from
        // vector and go to next index
        v.remove(itr);
    }
 
    // Print the result
    System.out.println(ans);
}
 
// Driver code
public static void main(String[] args)
{
     
    // Given Input
    int arr[] = { 2, 3, 1, 5, 4 };
    int n = arr.length;
 
    // Function Call
    countInversions(arr, n);
}
}
 
// This code is contributed by abhinavjain194

Python3

# Python3 program for the above approach
from bisect import bisect_left
 
# Function to count number of inversions in
# a permutation of first N natural numbers
def countInversions(arr, n):
     
    v = []
 
    # Store array elements in sorted order
    for i in range(1, n + 1, 1):
        v.append(i)
 
    # Store the count of inversions
    ans = 0
 
    # Traverse the array
    for i in range(n):
         
        # Store the index of first
        # occurrence of arr[i] in vector V
        itr = bisect_left(v, arr[i])
 
        # Add count of smaller elements
        # than current element
        ans += itr
 
        # Erase current element from
        # vector and go to next index
        v = v[:itr] + v[itr + 1 :]
 
    # Print the result
    print(ans)
 
# Driver Code
if __name__ == '__main__':
     
    # Given Input
    arr = [ 2, 3, 1, 5, 4 ]
    n = len(arr)
 
    # Function Call
    countInversions(arr, n)
     
# This code is contributed by SURENDRA_GANGWAR

C#

// C# program for the above approach
using System;
using System.Collections.Generic;
class GFG {
 
    // Function to count number of inversions in
    // a permutation of first N natural numbers
    static void countInversions(int[] arr, int n)
    {
        List<int> v = new List<int>();
 
        // Store array elements in sorted order
        for (int i = 1; i <= n; i++) {
            v.Add(i);
        }
 
        // Store the count of inversions
        int ans = 0;
 
        // Traverse the array
        for(int i =0 ;i <n;i ++){
 
            // Store the index of first
            // occurrence of arr[i] in vector V
            int itr = v.IndexOf(arr[i]);
         
 
            // Add count of smaller elements
            // than current element
            ans += itr;
 
            // Erase current element from
            // vector and go to next index
            v.RemoveAt(itr);
        }
 
        // Print the result
        Console.WriteLine(ans);
    }
 
    // Driver code
    public static void Main(string[] args)
    {
 
        // Given Input
        int[] arr = { 2, 3, 1, 5, 4 };
        int n = arr.Length;
 
        // Function Call
        countInversions(arr, n);
    }
}
 
// This code is contributed by ukasp.

Javascript

<script>
 
// Javascript program for the above approach
 
// Function to count number of inversions in
// a permutation of first N natural numbers
function countInversions(arr, n)
{
    var v = [];
    var i;
     
    // Store array elements in sorted order
    for(i = 1; i <= n; i++)
    {
        v.push(i);
    }
 
    // Store the count of inversions
    var ans = 0;
 
    // Traverse the array
    for(i = 0; i < n; i++)
    {
         
        // Store the index of first
        // occurrence of arr[i] in vector V
        var index = v.indexOf(arr[i]);
 
        // Add count of smaller elements
        // than current element
        ans += index;
 
        // Erase current element from
        // vector and go to next index
        v.splice(index, 1);
    }
 
    // Print the result
    document.write(ans);
}
 
// Driver code
 
// Given Input
var arr = [ 2, 3, 1, 5, 4 ];
var n = arr.length;
 
// Function Call
countInversions(arr, n);
 
// This code is contributed by bgangwar59
 
</script>
Producción: 

3

 

Complejidad de tiempo: O(N*log(N))
Espacio auxiliar: O(N)

Publicación traducida automáticamente

Artículo escrito por adarsh_sinhg y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *