Dado un entero positivo n, cuente un número distinto de pares (x, y) que satisfagan las siguientes condiciones:
- (x + y) es un número primo.
- (x + y) < norte
- x != y
- 1 <= x, y
Ejemplos:
Input : n = 6 Output : 3 prime pairs whose sum is less than 6 are: (1,2), (1,4), (2,3) Input : 12 Output : 11 prime pairs whose sum is less than 12 are: (1,2), (1,4), (2,3), (1,6), (2,5), (3,4), (1,10), (2,9), (3,8), (4,7), (5,6)
Acercarse:
1) Find all prime numbers less than n using Sieve of Sundaram 2) For each prime number p, count distinct pairs that sum up to p. For any odd number n, number of distinct pairs that add upto n are n/2 Since, a prime number is a odd number, the same applies for it too.
Ejemplo,
para el número primo p = 7
pares distintos que suman p: p/2 = 7/2 = 3
Los tres pares son (1,6), (2,5), (3,4)
Para el número primo p = 23
pares distintos que suman p: p/2 = 23/2 = 11
C++
// C++ implementation of prime pairs // whose sum is less than n #include <bits/stdc++.h> using namespace std; // Sieve of Sundaram for generating // prime numbers less than n void SieveOfSundaram(bool marked[], int nNew) { // Main logic of Sundaram. Mark all numbers // of the form i + j + 2ij as true where // 1 <= i <= j for (int i=1; i<=nNew; i++) for (int j=i; (i + j + 2*i*j) <= nNew; j++) marked[i + j + 2*i*j] = true; } // Returns number of pairs with given conditions. int countPrimePairs(int n) { // In general Sieve of Sundaram, produces // primes smaller than (2*x + 2) for a number // given number x. Since we want primes smaller // than n, we reduce n to half int nNew = (n-2)/2; // This array is used to separate numbers of // the form i+j+2ij from others where // 1 <= i <= j bool marked[nNew + 1]; // Initialize all elements as not marked memset(marked, false, sizeof(marked)); SieveOfSundaram(marked, nNew); int count = 0, prime_num; // Find primes. Primes are of the form // 2*i + 1 such that marked[i] is false. for (int i=1; i<=nNew; i++) { if (marked[i] == false) { prime_num = 2*i + 1; // For a given prime number p // number of distinct pairs(i,j) // where (i+j) = p are p/2 count = count + (prime_num / 2); } } return count; } // Driver program to test above int main(void) { int n = 12; cout << "Number of prime pairs: " << countPrimePairs(n); return 0; }
Java
// Java implementation of prime pairs // whose sum is less than n class GFG { // Sieve of Sundaram for generating // prime numbers less than n static void SieveOfSundaram(boolean marked[], int nNew) { // Main logic of Sundaram. Mark all numbers // of the form i + j + 2ij as true where // 1 <= i <= j for (int i = 1; i <= nNew; i++) for (int j = i; (i + j + 2 * i * j) <= nNew; j++) marked[i + j + 2 * i * j] = true; } // Returns number of pairs with given conditions. static int countPrimePairs(int n) { // In general Sieve of Sundaram, produces // primes smaller than (2*x + 2) for a number // given number x. Since we want primes smaller // than n, we reduce n to half int nNew = (n - 2) / 2; // This array is used to separate numbers of // the form i+j+2ij from others where // 1 <= i <= j // Initialize all elements as not marked boolean marked[]=new boolean[nNew + 1]; SieveOfSundaram(marked, nNew); int count = 0, prime_num; // Find primes. Primes are of the form // 2*i + 1 such that marked[i] is false. for (int i = 1; i <= nNew; i++) { if (marked[i] == false) { prime_num = 2 * i + 1; // For a given prime number p // number of distinct pairs(i, j) // where (i + j) = p are p/2 count = count + (prime_num / 2); } } return count; } // Driver code public static void main (String[] args) { int n = 12; System.out.println("Number of prime pairs: " + countPrimePairs(n)); } } // This code is contributed by mits
Python3
# Python3 implementation of prime pairs # whose sum is less than n # Sieve of Sundaram for generating # prime numbers less than n def SieveOfSundaram(marked, nNew): # Main logic of Sundaram. Mark all numbers # of the form i + j + 2ij as true where # 1 <= i <= j for i in range(1, nNew + 1): for j in range(i, nNew): if i + j + 2 * i * j > nNew: break marked[i + j + 2 * i * j] = True # Returns number of pairs with given conditions. def countPrimePairs(n): # In general Sieve of Sundaram, produces # primes smaller than (2*x + 2) for a number # given number x. Since we want primes smaller # than n, we reduce n to half nNew = (n - 2) // 2 # This array is used to separate numbers # of the form i+j+2ij from others where # 1 <= i <= j marked = [ False for i in range(nNew + 1)] SieveOfSundaram(marked, nNew) count, prime_num = 0, 0 # Find primes. Primes are of the form # 2*i + 1 such that marked[i] is false. for i in range(1, nNew + 1): if (marked[i] == False): prime_num = 2 * i + 1 # For a given prime number p # number of distinct pairs(i,j) # where (i+j) = p are p/2 count = count + (prime_num // 2) return count # Driver Code n = 12 print("Number of prime pairs: ", countPrimePairs(n)) # This code is contributed by Mohit kumar 29
C#
// C# implementation of prime pairs // whose sum is less than n using System; class GFG { // Sieve of Sundaram for generating // prime numbers less than n static void SieveOfSundaram(bool[] marked, int nNew) { // Main logic of Sundaram. Mark all numbers // of the form i + j + 2ij as true where // 1 <= i <= j for (int i = 1; i <= nNew; i++) for (int j = i; (i + j + 2 * i * j) <= nNew; j++) marked[i + j + 2 * i * j] = true; } // Returns number of pairs with given conditions. static int countPrimePairs(int n) { // In general Sieve of Sundaram, produces // primes smaller than (2*x + 2) for a // number given number x. Since we want // primes smaller than n, we reduce n to half int nNew = (n - 2) / 2; // This array is used to separate numbers // of the form i+j+2ij from others where // 1 <= i <= j // Initialize all elements as not marked bool[] marked = new bool[nNew + 1]; SieveOfSundaram(marked, nNew); int count = 0, prime_num; // Find primes. Primes are of the form // 2*i + 1 such that marked[i] is false. for (int i = 1; i <= nNew; i++) { if (marked[i] == false) { prime_num = 2 * i + 1; // For a given prime number p // number of distinct pairs(i, j) // where (i + j) = p are p/2 count = count + (prime_num / 2); } } return count; } // Driver code public static void Main () { int n = 12; Console.WriteLine("Number of prime pairs: " + countPrimePairs(n)); } } // This Code is Contribute by Mukul Singh.
PHP
<?php // PHP implementation of prime pairs // whose sum is less than n // Sieve of Sundaram for generating // prime numbers less than n function SieveOfSundaram(&$marked, $nNew) { // Main logic of Sundaram. Mark all // numbers of the form i + j + 2ij // as true where 1 <= i <= j for ($i = 1; $i <= $nNew; $i++) for ($j = $i; ($i + $j + 2 * $i * $j) <= $nNew; $j++) $marked[$i + $j + 2 * $i * $j] = true; } // Returns number of pairs with // given conditions. function countPrimePairs($n) { // In general Sieve of Sundaram, produces // primes smaller than (2*x + 2) for a // number given number x. Since we want // primes smaller than n, we reduce n to half $nNew = ($n - 2) / 2; // This array is used to separate numbers // of the form i+j+2ij from others where // 1 <= i <= j $marked = array_fill(0, $nNew + 1, false); SieveOfSundaram($marked, $nNew); $count = 0; // Find primes. Primes are of the form // 2*i + 1 such that marked[i] is false. for ($i = 1; $i <= $nNew; $i++) { if ($marked[$i] == false) { $prime_num = 2 * $i + 1; // For a given prime number p // number of distinct pairs(i,j) // where (i+j) = p are p/2 $count = $count + (int)($prime_num / 2); } } return $count; } // Driver Code $n = 12; echo "Number of prime pairs: " . countPrimePairs($n); // This code is contributed by // chandan_jnu ?>
Javascript
<script> // Javascript implementation of prime pairs // whose sum is less than n // Sieve of Sundaram for generating // prime numbers less than n function SieveOfSundaram(marked, nNew) { // Main logic of Sundaram. Mark all numbers // of the form i + j + 2ij as true where // 1 <= i <= j for(i = 1; i <= nNew; i++) for(j = i; (i + j + 2 * i * j) <= nNew; j++) marked[i + j + 2 * i * j] = true; } // Returns number of pairs with given conditions. function countPrimePairs(n) { // In general Sieve of Sundaram, produces // primes smaller than (2*x + 2) for a number // given number x. Since we want primes smaller // than n, we reduce n to half var nNew = parseInt((n - 2) / 2); // This array is used to separate numbers of // the form i+j+2ij from others where // 1 <= i <= j // Initialize all elements as not marked marked = Array.from({length: nNew + 1}, (_, i) => false); SieveOfSundaram(marked, nNew); var count = 0, prime_num; // Find primes. Primes are of the form // 2*i + 1 such that marked[i] is false. for(i = 1; i <= nNew; i++) { if (marked[i] == false) { prime_num = 2 * i + 1; // For a given prime number p // number of distinct pairs(i, j) // where (i + j) = p are p/2 count = count + parseInt(prime_num / 2); } } return count; } // Driver code var n = 12; document.write("Number of prime pairs: " + countPrimePairs(n)); // This code is contributed by Princi Singh </script>
Producción:
Number of prime pairs: 11
Este artículo es una contribución de Ayush Jauhari . Si te gusta GeeksforGeeks y te gustaría contribuir, también puedes escribir un artículo usando write.geeksforgeeks.org o enviar tu artículo por correo a review-team@geeksforgeeks.org. Vea su artículo que aparece en la página principal de GeeksforGeeks y ayude a otros Geeks.
Escriba comentarios si encuentra algo incorrecto o si desea compartir más información sobre el tema tratado anteriormente.
Publicación traducida automáticamente
Artículo escrito por GeeksforGeeks-1 y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA