Contar subarreglos con Prime sum

Dada una array A[] de enteros. La tarea es contar los subarreglos totales cuya suma es primo con ( tamaño > 1 ).

Ejemplos

Input : A[] = { 1, 2, 3, 4, 5 }
Output : 3
Subarrays are -> {1, 2}, {2, 3}, {3, 4}

Input : A = { 22, 33, 4, 1, 10 };
Output : 4

Enfoque: Genere todos los subarreglos posibles y almacene su suma en un vector . Iterar el vector y verificar si una suma es prima o no. SÍ incrementa el conteo.
Puede usar la criba de eratóstenes para comprobar si una suma es prima en O(1).

A continuación se muestra la implementación del enfoque anterior:  

C++

// C++ program to count subarrays
// with Prime sum
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to count subarrays
// with Prime sum
int primeSubarrays(int A[], int n)
{
    int max_val = int(pow(10, 7));
 
    // USE SIEVE TO FIND ALL PRIME NUMBERS LESS
    // THAN OR EQUAL TO max_val
    // Create a boolean array "prime[0..n]". A
    // value in prime[i] will finally be false
    // if i is Not a prime, else true.
    vector<bool> prime(max_val + 1, true);
 
    // Remaining part of SIEVE
    prime[0] = false;
    prime[1] = false;
    for (int p = 2; p * p <= max_val; p++) {
 
        // If prime[p] is not changed, then
        // it is a prime
        if (prime[p] == true) {
 
            // Update all multiples of p
            for (int i = p * 2; i <= max_val; i += p)
                prime[i] = false;
        }
    }
 
    int cnt = 0; // Initialize result
 
    // Traverse through the array
    for (int i = 0; i < n - 1; ++i) {
        int val = A[i];
        for (int j = i + 1; j < n; ++j) {
            val += A[j];
 
            if (prime[val])
                ++cnt;
        }
    }
 
    // return answer
    return cnt;
}
 
// Driver program
int main()
{
    int A[] = { 1, 2, 3, 4, 5 };
    int n = sizeof(A) / sizeof(A[0]);
 
    cout << primeSubarrays(A, n);
 
    return 0;
}

Java

// Java program to count subarrays
// with Prime sum
class GFG
{
   
    // Function to count subarrays
    // with Prime sum
    static int primeSubarrays(int[] A, int n)
    {
        int max_val = 10000000;
     
        // USE SIEVE TO FIND ALL PRIME NUMBERS LESS
        // THAN OR EQUAL TO max_val
        // Create a boolean array "prime[0..n]". A
        // value in prime[i] will finally be false
        // if i is Not a prime, else true.
        boolean[] prime = new boolean[max_val + 1];
     
         
        //initialize initial value
        for (int p = 0; p < max_val + 1; p++)
        prime[p]=true;
     
        // Remaining part of SIEVE
        prime[0]=false;
        prime[1]=false;
        for (int p = 2; p * p <= max_val; p++) {
     
            // If prime[p] is not changed, then
            // it is a prime
            if (prime[p] == true) {
     
                // Update all multiples of p
                for (int i = p * 2; i <= max_val; i += p)
                    prime[i]=false;
            }
        }
     
        int cnt = 0; // Initialize result
     
        // Traverse through the array
        for (int i = 0; i < n - 1; ++i) {
            int val = A[i];
            for (int j = i + 1; j < n; ++j) {
                val += A[j];
     
                if (prime[val])
                    ++cnt;
            }
        }
     
        // return answer
        return cnt;
    }
     
    //Driver code
    public static void main(String[] args) {
        int[] A = { 1, 2, 3, 4, 5 };
        int n = A.length;
     
        System.out.println(primeSubarrays(A, n));
    }
}
 
 
//This code is contributed by phasing17

Python3

# Python3 program to count subarrays
# with Prime sum
 
# Function to count subarrays
# with Prime sum
def primeSubarrays(A, n):
 
    max_val = 10**7
 
    # USE SIEVE TO FIND ALL PRIME NUMBERS
    # LESS THAN OR EQUAL TO max_val
    # Create a boolean array "prime[0..n]". A
    # value in prime[i] will finally be false
    # if i is Not a prime, else true.
    prime = [True] * (max_val + 1)
 
    # Remaining part of SIEVE
    prime[0] = False
    prime[1] = False
    for p in range(2, int(max_val**(0.5)) + 1):
 
        # If prime[p] is not changed, then
        # it is a prime
        if prime[p] == True:
 
            # Update all multiples of p
            for i in range(2 * p, max_val + 1, p):
                prime[i] = False
         
    cnt = 0 # Initialize result
 
    # Traverse through the array
    for i in range(0, n - 1):
        val = A[i]
        for j in range(i + 1, n):
            val += A[j]
 
            if prime[val] == True:
                cnt += 1
 
    # return answer
    return cnt
 
# Driver Code
if __name__ == "__main__":
 
    A = [1, 2, 3, 4, 5]
    n = len(A)
 
    print(primeSubarrays(A, n))
 
# This code is contributed by Rituraj Jain

C#

// C# program to count subarrays
// with Prime sum
 
class Solution
{
 
// Function to count subarrays
// with Prime sum
static int primeSubarrays(int[] A, int n)
{
    int max_val = (int)(System.Math.Pow(10, 7));
 
    // USE SIEVE TO FIND ALL PRIME NUMBERS LESS
    // THAN OR EQUAL TO max_val
    // Create a boolean array "prime[0..n]". A
    // value in prime[i] will finally be false
    // if i is Not a prime, else true.
    bool[] prime=new bool[max_val + 1];
 
     
    //initialize initial value
    for (int p = 0; p <max_val + 1; p++)
    prime[p]=true;
 
    // Remaining part of SIEVE
    prime[0]=false;
    prime[1]=false;
    for (int p = 2; p * p <= max_val; p++) {
 
        // If prime[p] is not changed, then
        // it is a prime
        if (prime[p] == true) {
 
            // Update all multiples of p
            for (int i = p * 2; i <= max_val; i += p)
                prime[i]=false;
        }
    }
 
    int cnt = 0; // Initialize result
 
    // Traverse through the array
    for (int i = 0; i < n - 1; ++i) {
        int val = A[i];
        for (int j = i + 1; j < n; ++j) {
            val += A[j];
 
            if (prime[val])
                ++cnt;
        }
    }
 
    // return answer
    return cnt;
}
 
// Driver program
static void Main()
{
    int[] A = { 1, 2, 3, 4, 5 };
    int n = A.Length;
 
    System.Console.WriteLine( primeSubarrays(A, n));
 
}
}
//contributed by mits

PHP

<?php
// PHP program to count subarrays
// with Prime sum
 
 
// Function to count subarrays
// with Prime sum
function primeSubarrays($A, $n)
{
    $max_val = pow(10, 5);
 
    // USE SIEVE TO FIND ALL PRIME NUMBERS LESS
    // THAN OR EQUAL TO max_val
    // Create a boolean array "prime[0..n]". A
    // value in prime[i] will finally be false
    // if i is Not a prime, else true.
    $prime=array_fill(0,$max_val + 1,true);
 
    // Remaining part of SIEVE
    $prime[0] = false;
    $prime[1] = false;
    for ($p = 2; $p * $p <= $max_val; $p++) {
 
        // If prime[p] is not changed, then
        // it is a prime
        if ($prime[$p] == true) {
 
            // Update all multiples of p
            for ($i = $p * 2; $i <= $max_val; $i += $p)
                $prime[$i] = false;
        }
    }
 
    $cnt = 0; // Initialize result
 
    // Traverse through the array
    for ($i = 0; $i < $n - 1; ++$i) {
        $val = $A[$i];
        for ($j = $i + 1; $j < $n; ++$j) {
            $val += $A[$j];
 
            if ($prime[$val])
                ++$cnt;
        }
    }
 
    // return answer
    return $cnt;
}
 
// Driver program
  
    $A = array( 1, 2, 3, 4, 5 );
    $n = count($A);
 
    echo primeSubarrays($A, $n);
 
// This code is contributed by mits
?>

Javascript

<script>
 
// JavaScript program to count subarrays
// with Prime sum
 
 
// Function to count subarrays
// with Prime sum
function primeSubarrays(A, n)
{
    var max_val = parseInt(Math.pow(10, 7));
 
    // USE SIEVE TO FIND ALL PRIME NUMBERS LESS
    // THAN OR EQUAL TO max_val
    // Create a boolean array "prime[0..n]". A
    // value in prime[i] will finally be false
    // if i is Not a prime, else true.
    var prime = new Array(max_val + 1);
    prime.fill(true);
    // Remaining part of SIEVE
    prime[0] = false;
    prime[1] = false;
    for (var p = 2; p * p <= max_val; p++) {
 
        // If prime[p] is not changed, then
        // it is a prime
        if (prime[p] == true) {
 
            // Update all multiples of p
            for (var i = p * 2; i <= max_val; i += p)
                prime[i] = false;
        }
    }
 
    var cnt = 0; // Initialize result
 
    // Traverse through the array
    for (var i = 0; i < n - 1; ++i) {
        var val = A[i];
        for (var j = i + 1; j < n; ++j) {
            val += A[j];
 
            if (prime[val])
                ++cnt;
        }
    }
 
    // return answer
    return cnt;
}
    var A = [ 1, 2, 3, 4, 5 ];
    var n =A.length;
 
document.write( primeSubarrays(A, n));
 
// This code is contributed by SoumikMondal
 
</script>
Producción: 

3

 

Complejidad del tiempo: O(nlog(logn))

Espacio Auxiliar: O(max_val)
 

Publicación traducida automáticamente

Artículo escrito por Sanjit_Prasad y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *