Dada una array arr[] que denota los coeficientes enteros del polinomio, la tarea es encontrar el contenido del polinomio.
El contenido de polinomios con coeficientes enteros se define como el máximo común divisor de sus coeficientes enteros.
Eso es para:F(x) = a m x m + a m-1 x m-1 + ……..+a 1 x + a 0
Entonces, Contenido del Polinomio = mcd(a m , a m-1 , a m-2 …., un 1 , un 0 )
Ejemplos:
Entrada: arr[] = {9, 30, 12}
Salida: 3
Explicación:
El polinomio dado puede ser: 9x 2 + 30x + 12
Por lo tanto, Contenido = mcd(9, 30, 12) = 3Entrada: arr[] = {2, 4, 6}
Salida: 2
Enfoque: La idea es encontrar el Máximo común divisor de todos los elementos de la array que se puede calcular encontrando el GCD repetidamente eligiendo dos elementos a la vez. Eso es:
gcd(a, b, c) = gcd(gcd(a, b), c) = gcd(a, gcd(b, c)) = gcd(gcd(a, c), b)
A continuación se muestra la implementación del enfoque anterior:
C++
// C++ implementation to find the // content of the polynomial #include <bits/stdc++.h> using namespace std; #define newl "\n" #define ll long long #define pb push_back // Function to find the content // of the polynomial int findContent(int arr[], int n) { int content = arr[0]; // Loop to iterate over the // elements of the array for (int i = 1; i < n; i++) { //__gcd(a, b) is a inbuilt // function for Greatest // Common Divisor content = __gcd(content, arr[i]); } return content; } // Driver Code int main() { int n = 3; int arr[] = { 9, 6, 12 }; // Function call cout << findContent(arr, n); return 0; }
Java
// Java implementation to find the // content of the polynomial class GFG{ // Function to find the content // of the polynomial static int findContent(int arr[], int n) { int content = arr[0]; // Loop to iterate over the // elements of the array for(int i = 1; i < n; i++) { //__gcd(a, b) is a inbuilt // function for Greatest // Common Divisor content = __gcd(content, arr[i]); } return content; } static int __gcd(int a, int b) { return b == 0 ? a : __gcd(b, a % b); } // Driver Code public static void main(String[] args) { int n = 3; int arr[] = { 9, 6, 12 }; // Function call System.out.print(findContent(arr, n)); } } // This code is contributed by sapnasingh4991
Python3
# Python3 implementation to find the # content of the polynomial from math import gcd # Function to find the content # of the polynomial def findContent(arr, n): content = arr[0] # Loop to iterate over the # elements of the array for i in range(1, n): # __gcd(a, b) is a inbuilt # function for Greatest # Common Divisor content = gcd(content, arr[i]) return content # Driver Code if __name__ == '__main__': n = 3 arr = [ 9, 6, 12 ] # Function call print(findContent(arr, n)) # This code is contributed by mohit kumar 29
C#
// C# implementation to find the // content of the polynomial using System; class GFG{ // Function to find the content // of the polynomial static int findContent(int []arr, int n) { int content = arr[0]; // Loop to iterate over the // elements of the array for(int i = 1; i < n; i++) { //__gcd(a, b) is a inbuilt // function for Greatest // Common Divisor content = __gcd(content, arr[i]); } return content; } static int __gcd(int a, int b) { return b == 0 ? a : __gcd(b, a % b); } // Driver Code public static void Main(String[] args) { int n = 3; int []arr = { 9, 6, 12 }; // Function call Console.Write(findContent(arr, n)); } } // This code is contributed by PrinciRaj1992
Javascript
<script> // Javascript implementation to find the // content of the polynomial // Function to find the content // of the polynomial function findContent(arr, n) { var content = arr[0]; // Loop to iterate over the // elements of the array for(var i = 1; i < n; i++) { //__gcd(a, b) is a inbuilt // function for Greatest // Common Divisor content = __gcd(content, arr[i]); } return content; } function __gcd(a, b) { return b == 0 ? a : __gcd(b, a % b); } // Driver Code var n = 3; var arr = [ 9, 6, 12 ]; // Function call document.write(findContent(arr, n)); // This code is contributed by kirti </script>
3