Dada una array arr[] de N enteros no negativos. La tarea es contar el número de tripletes (i, j, k) donde 0 ≤ i < j ≤ k < N tal que A[i] ^ A[i + 1] ^ … ^ A[j – 1] = A [j] ^ A[j + 1] ^ … ^ A[k] donde ^ es el XOR bit a bit.
Ejemplos:
Entrada: arr[] = {2, 5, 6, 4, 2}
Salida: 2
Los tripletes válidos son (2, 3, 4) y (2, 4, 4).
Entrada: arr[] = {5, 2, 7}
Salida: 2
Enfoque ingenuo: considere todos y cada uno de los tripletes y verifique si el xor de los elementos requeridos es igual o no.
Enfoque eficiente: Si arr[i] ^ arr[i + 1] ^ … ^ arr[j – 1] = arr[j] ^ arr[j + 1] ^ … ^ arr[k] entonces arr[i] ^ arr [i + 1] ^ … ^ arr[k] = 0 ya que X ^ X = 0 . Ahora el problema se reduce a encontrar los subconjuntos con XOR 0. Pero cada subconjunto puede tener múltiples tripletes, es decir
Si arr[i] ^ arr[i + 1] ^ … ^ arr[k] = 0
entonces, (arr[i]) ^ (arr[i + 1] ^ … ^ arr[k]) = 0
y, arr [i] ^ (arr[i + 1]) ^ … ^ arr[k] = 0
arr[i] ^ arr[i + 1] ^ (arr[i + 2]) ^ … ^ arr[k] = 0
…
j puede tener cualquier valor desde i + 1 hasta k sin violar la propiedad requerida.
A continuación se muestra la implementación del enfoque anterior:
C++
// C++ implementation of the approach #include <bits/stdc++.h> using namespace std; // Function to return the count // of required triplets int CountTriplets(int* arr, int n) { int ans = 0; for (int i = 0; i < n - 1; i++) { // First element of the // current sub-array int first = arr[i]; for (int j = i + 1; j < n; j++) { // XOR every element of // the current sub-array first ^= arr[j]; // If the XOR becomes 0 then // update the count of triplets if (first == 0) ans += (j - i); } } return ans; } // Driver code int main() { int arr[] = { 2, 5, 6, 4, 2 }; int n = sizeof(arr) / sizeof(arr[0]); cout << CountTriplets(arr, n); return 0; }
Java
// Java implementation of the approach class GFG { // Function to return the count // of required triplets static int CountTriplets(int[] arr, int n) { int ans = 0; for (int i = 0; i < n - 1; i++) { // First element of the // current sub-array int first = arr[i]; for (int j = i + 1; j < n; j++) { // XOR every element of // the current sub-array first ^= arr[j]; // If the XOR becomes 0 then // update the count of triplets if (first == 0) ans += (j - i); } } return ans; } // Driver code public static void main(String[] args) { int arr[] = {2, 5, 6, 4, 2}; int n = arr.length; System.out.println(CountTriplets(arr, n)); } } // This code is contributed by Princi Singh
Python3
# Python3 implementation of the approach # Function to return the count # of required triplets def CountTriplets(arr, n): ans = 0 for i in range(n - 1): # First element of the # current sub-array first = arr[i] for j in range(i + 1, n): # XOR every element of # the current sub-array first ^= arr[j] # If the XOR becomes 0 then # update the count of triplets if (first == 0): ans += (j - i) return ans # Driver code arr = [2, 5, 6, 4, 2 ] n = len(arr) print(CountTriplets(arr, n)) # This code is contributed by Mohit Kumar
C#
// C# implementation of the approach using System; class GFG { // Function to return the count // of required triplets static int CountTriplets(int[] arr, int n) { int ans = 0; for (int i = 0; i < n - 1; i++) { // First element of the // current sub-array int first = arr[i]; for (int j = i + 1; j < n; j++) { // XOR every element of // the current sub-array first ^= arr[j]; // If the XOR becomes 0 then // update the count of triplets if (first == 0) ans += (j - i); } } return ans; } // Driver code public static void Main() { int []arr = {2, 5, 6, 4, 2}; int n = arr.Length; Console.WriteLine(CountTriplets(arr, n)); } } // This code is contributed by AnkitRai01
Javascript
<script> // Javascript implementation of the approach // Function to return the count // of required triplets function CountTriplets(arr, n) { let ans = 0; for (let i = 0; i < n - 1; i++) { // First element of the // current sub-array let first = arr[i]; for (let j = i + 1; j < n; j++) { // XOR every element of // the current sub-array first ^= arr[j]; // If the XOR becomes 0 then // update the count of triplets if (first == 0) ans += (j - i); } } return ans; } // Driver code let arr = [ 2, 5, 6, 4, 2 ]; let n = arr.length; document.write(CountTriplets(arr, n)); // This code is contributed by gfgking. </script>
2
Complejidad Temporal: O(n 2 ).
Espacio Auxiliar : O(1).
Publicación traducida automáticamente
Artículo escrito por Shivamj075 y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA