Cuenta los Nodes cuyo peso es un cuadrado perfecto

Dado un árbol, y los pesos de todos los Nodes, la tarea es contar el número de Nodes cuyo peso es un Cuadrado perfecto.
Ejemplos: 
 

Aporte: 
 

Salida:
Solo los pesos de los Nodes 1, 4 y 5 son cuadrados perfectos. 
 

Enfoque: Realice dfs en el árbol y para cada Node, verifique si su peso es un cuadrado perfecto o no.
A continuación se muestra la implementación del enfoque anterior: 
 

C++

// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
int ans = 0;
 
vector<int> graph[100];
vector<int> weight(100);
 
// Function that returns true
// if n is a perfect square
bool isPerfectSquare(int n)
{
    double x = sqrt(n);
    if (floor(x) != ceil(x))
        return false;
    return true;
}
 
// Function to perform dfs
void dfs(int node, int parent)
{
    // If weight of the current node
    // is a perfect square
    if (isPerfectSquare(weight[node]))
        ans += 1;
 
    for (int to : graph[node]) {
        if (to == parent)
            continue;
        dfs(to, node);
    }
}
 
// Driver code
int main()
{
    int x = 15;
 
    // Weights of the node
    weight[1] = 4;
    weight[2] = 5;
    weight[3] = 3;
    weight[4] = 25;
    weight[5] = 16;
    weight[6] = 30;
 
    // Edges of the tree
    graph[1].push_back(2);
    graph[2].push_back(3);
    graph[2].push_back(4);
    graph[1].push_back(5);
    graph[5].push_back(6);
 
    dfs(1, 1);
 
    cout << ans;
 
    return 0;
}

Java

// Java implementation of the approach
import java.util.*;
 
class GFG{
  
static int ans = 0;
  
static Vector<Integer>[] graph = new Vector[100];
static int[] weight = new int[100];
  
// Function that returns true
// if n is a perfect square
static boolean isPerfectSquare(int n)
{
    double x = Math.sqrt(n);
    if (Math.floor(x) != Math.ceil(x))
        return false;
    return true;
}
  
// Function to perform dfs
static void dfs(int node, int parent)
{
    // If weight of the current node
    // is a perfect square
    if (isPerfectSquare(weight[node]))
        ans += 1;
  
    for (int to : graph[node]) {
        if (to == parent)
            continue;
        dfs(to, node);
    }
}
  
// Driver code
public static void main(String[] args)
{
    int x = 15;
    for (int i = 0; i < 100; i++)
        graph[i] = new Vector<>();
     
    // Weights of the node
    weight[1] = 4;
    weight[2] = 5;
    weight[3] = 3;
    weight[4] = 25;
    weight[5] = 16;
    weight[6] = 30;
  
    // Edges of the tree
    graph[1].add(2);
    graph[2].add(3);
    graph[2].add(4);
    graph[1].add(5);
    graph[5].add(6);
  
    dfs(1, 1);
  
    System.out.print(ans);
}
}
 
// This code is contributed by Rajput-Ji

Python3

# Python3 implementation of the approach
from math import *
ans = 0
 
graph = [[] for i in range(100)]
weight = [0] * 100
 
# Function that returns true
# if n is a perfect square
def isPerfectSquare(n):
    x = sqrt(n)
    if (floor(x) != ceil(x)):
        return False
    return True
 
# Function to perform dfs
def dfs(node, parent):
    global ans
     
    # If weight of the current node
    # is a perfect square
    if (isPerfectSquare(weight[node])):
        ans += 1;
     
    for to in graph[node]:
        if (to == parent):
            continue
        dfs(to, node)
 
# Driver code
 
x = 15
 
# Weights of the node
weight[1] = 4
weight[2] = 5
weight[3] = 3
weight[4] = 25
weight[5] = 16
weight[6] = 30
 
# Edges of the tree
graph[1].append(2)
graph[2].append(3)
graph[2].append(4)
graph[1].append(5)
graph[5].append(6)
 
dfs(1, 1)
print(ans)
 
# This code is contributed by SHUBHAMSINGH10

C#

// C# program for the above approach
using System;
using System.Collections;
using System.Collections.Generic;
using System.Text;
 
class GFG{
     
static int ans = 0;
 
static ArrayList[] graph = new ArrayList[100];
static int[] weight = new int[100];
 
// Function that returns true
// if n is a perfect square
static bool isPerfectSquare(int n)
{
    double x = Math.Sqrt(n);
     
    if (Math.Floor(x) != Math.Ceiling(x))
        return false;
         
    return true;
}
 
// Function to perform dfs
static void dfs(int node, int parent)
{
     
    // If weight of the current node
    // is a perfect square
    if (isPerfectSquare(weight[node]))
        ans += 1;
 
    foreach(int to in graph[node])
    {
        if (to == parent)
            continue;
             
        dfs(to, node);
    }
}
     
// Driver Code
public static void Main(string[] args)
{
    //int x = 15;
    for(int i = 0; i < 100; i++)
        graph[i] = new ArrayList();
     
    // Weights of the node
    weight[1] = 4;
    weight[2] = 5;
    weight[3] = 3;
    weight[4] = 25;
    weight[5] = 16;
    weight[6] = 30;
 
    // Edges of the tree
    graph[1].Add(2);
    graph[2].Add(3);
    graph[2].Add(4);
    graph[1].Add(5);
    graph[5].Add(6);
 
    dfs(1, 1);
 
    Console.Write(ans);
}
}
 
// This code is contributed by rutvik_56

Javascript

<script>
 
// Javascript implementation of the approach
     
    let ans=0;
     
    let graph = new Array(100);
     
     
    let weight = new Array(100);
    for(let i=0;i<100;i++)
    {
        graph[i]=[];
        weight[i]=0;
    }
     
    // Function that returns true
    // if n is a perfect square
    function isPerfectSquare(n)
    {
        let x = Math.sqrt(n);
        if (Math.floor(x) != Math.ceil(x))
            return false;
        return true;
    }
     
    // Function to perform dfs
    function dfs(node,parent)
    {
        // If weight of the current node
        // is a perfect square
        if (isPerfectSquare(weight[node]))
            ans += 1;
        for(let to=0;to<graph[node].length;to++)
        {
            if(graph[node][to] == parent)
                continue
            dfs(graph[node][to], node);  
        }
         
    }
     
    // Driver code
     
    x = 15;
   
    // Weights of the node
    weight[1] = 4;
    weight[2] = 5;
    weight[3] = 3;
    weight[4] = 25;
    weight[5] = 16;
    weight[6] = 30;
       
   
    // Edges of the tree
    graph[1].push(2);
    graph[2].push(3);
    graph[2].push(4);
    graph[1].push(5);
    graph[5].push(6);
     
    dfs(1, 1);
   
    document.write( ans);
     
    // This code is contributed by unknown2108
     
</script>
Producción: 

3

 

Análisis de Complejidad: 
 

  • Complejidad temporal: O(N*logV) donde V es el peso máximo de un Node en el árbol. 
    En DFS, cada Node del árbol se procesa una vez y, por lo tanto, la complejidad debida al DFS es O(N) para N Nodes en el árbol. Además, mientras se procesa cada Node, para verificar si el valor del Node es un cuadrado perfecto o no, se llama a la raíz cuadrada (V) incorporada, donde V es el peso del Node y esta función tiene una complejidad de O (log V). Por lo tanto, para cada Node, existe una complejidad adicional de O (log V). Por lo tanto, la complejidad temporal total es O(N*logV).
  • Espacio Auxiliar: O(1). 
    No se requiere ningún espacio adicional, por lo que la complejidad del espacio es constante.

Publicación traducida automáticamente

Artículo escrito por mohit kumar 29 y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *