Cuente las formas de generar una array que tenga elementos distintos en M índices consecutivos

Dada una array arr[] que consta de N enteros en el rango [0, M] y un entero M , la tarea es contar el número de formas de reemplazar todos los elementos de la array cuyo valor es 0 con valores distintos de cero del rango [ 0, M] tales que todos los M elementos consecutivos posibles son distintos.

Ejemplos:

Entrada: arr[] = { 1, 0, 3, 0, 0 }, M = 4 
Salida:
Explicación: 
posibles formas de reemplazar arr[1], arr[3] y arr[4] con valores distintos de cero como que ningún M( = 4) elementos consecutivos contiene elementos duplicados son { { 1, 2, 3, 4, 1 }, { 1, 4, 3, 2, 1 } }. 
Por lo tanto, la salida requerida es 2.

Entrada: arr[] = {0, 1, 2, 1, 0}, M = 4 
Salida:
Explicación: Tales arreglos no son posibles.

 

Enfoque: la idea es reemplazar 0 s con elementos distintos de cero, de modo que arr[i] debe ser igual a arr[i % M] . Siga los pasos a continuación para resolver el problema:

  • Inicialice una array B[] de tamaño M + 1 para almacenar M elementos de array de array consecutivos de modo que arr[i] sea igual a B[i % M] .
  • Atraviese la array y verifique las siguientes condiciones:
    • Si arr[i] no es 0 y B[i % M] es 0 , entonces B[i % M] será igual a arr[i] ya que este número debe estar presente tal cual.
    • Si arr[i] no es igual a B[i % M] , imprima 0 ya que no existen tales arreglos.
  • Calcule la cuenta de 0 s en la array B[] , digamos X .
  • Entonces, existen arreglos posibles del factorial X , por lo tanto, imprima el valor del factorial X.

A continuación se muestra la implementación del enfoque anterior:

C++

// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Modular function
// to calculate factorial
long long int Fact(int N)
{
    // Stores factorial of N
    long long int result = 1;
 
    // Iterate over the range [1, N]
    for (int i = 1; i <= N; i++) {
 
        // Update result
        result = (result * i);
    }
 
    return result;
}
 
// Function to count ways to replace array
// elements having 0s with non-zero elements
// such that any M consecutive elements are distinct
void numberOfWays(int M, int arr[], int N)
{
 
    // Store m consecutive distinct elements
    // such that arr[i] is equal to B[i % M]
    int B[M] = { 0 };
 
    // Stores frequency of array elements
    int counter[M + 1] = { 0 };
 
    // Traverse the array arr[]
    for (int i = 0; i < N; i++) {
 
        // If arr[i] is non-zero
        if (arr[i] != 0) {
 
            // If B[i % M] is equal to 0
            if (B[i % M] == 0) {
 
                // Update B[i % M]
                B[i % M] = arr[i];
 
                // Update frequency of arr[i]
                counter[arr[i]]++;
 
                // If a duplicate element found
                // in M consecutive elements
                if (counter[arr[i]] > 1) {
                    cout << 0 << endl;
                    return;
                }
            }
 
            // Handling the case of
            // inequality
            else if (B[i % M] != arr[i]) {
 
                cout << 0 << endl;
                return;
            }
        }
    }
 
    // Stores count of 0s
    // in B[]
    int cnt = 0;
 
    // Traverse the array, B[]
    for (int i = 0; i < M; i++) {
 
        // If B[i] is 0
        if (B[i] == 0) {
 
            // Update cnt
            cnt++;
        }
    }
 
    // Calculate factorial
    cout << Fact(cnt) << endl;
}
 
// Driver Code
int main()
{
 
    // Given M
    int M = 4;
 
    // Given array
    int arr[] = { 1, 0, 3, 0, 0 };
 
    // Size of the array
    int N = sizeof(arr) / sizeof(arr[0]);
 
    // Function Call
    numberOfWays(M, arr, N);
}

Java

// Java program for the above approach
import java.io.*;
 
class GFG{
 
// Modular function
// to calculate factorial
static int Fact(int N)
{
     
    // Stores factorial of N
    int result = 1;
 
    // Iterate over the range [1, N]
    for(int i = 1; i <= N; i++)
    {
         
        // Update result
        result = (result * i);
    }
    return result;
}
 
// Function to count ways to replace array
// elements having 0s with non-zero elements
// such that any M consecutive elements are distinct
static void numberOfWays(int M, int[] arr, int N)
{
     
    // Store m consecutive distinct elements
    // such that arr[i] is equal to B[i % M]
    int[] B = new int[M];
 
    // Stores frequency of array elements
    int[] counter = new int[M + 1];
 
    // Traverse the array arr[]
    for(int i = 0; i < N; i++)
    {
         
        // If arr[i] is non-zero
        if (arr[i] != 0)
        {
             
            // If B[i % M] is equal to 0
            if (B[i % M] == 0)
            {
                 
                // Update B[i % M]
                B[i % M] = arr[i];
 
                // Update frequency of arr[i]
                counter[arr[i]]++;
 
                // If a duplicate element found
                // in M consecutive elements
                if (counter[arr[i]] > 1)
                {
                    System.out.println(0);
                    return;
                }
            }
 
            // Handling the case of
            // inequality
            else if (B[i % M] != arr[i])
            {
                System.out.println(0);
                return;
            }
        }
    }
 
    // Stores count of 0s
    // in B[]
    int cnt = 0;
 
    // Traverse the array, B[]
    for(int i = 0; i < M; i++)
    {
         
        // If B[i] is 0
        if (B[i] == 0)
        {
             
            // Update cnt
            cnt++;
        }
    }
 
    // Calculate factorial
    System.out.println(Fact(cnt));
}
 
// Driver Code
public static void main(String[] args)
{
     
    // Given M
    int M = 4;
 
    // Given array
    int[] arr = new int[]{ 1, 0, 3, 0, 0 };
 
    // Size of the array
    int N = arr.length;
 
    // Function Call
    numberOfWays(M, arr, N);
}
}
 
// This code is contributed by Dharanendra L V

Python3

# Python3 program for the above approach
 
# Modular function
# to calculate factorial
def Fact(N):
     
    # Stores factorial of N
    result = 1
     
    # Iterate over the range [1, N]
    for i in range(1, N + 1):
         
        # Update result
        result = (result * i)
 
    return result
 
# Function to count ways to replace array
# elements having 0s with non-zero elements
# such that any M consecutive elements are distinct
def numberOfWays(M, arr, N):
     
    # Store m consecutive distinct elements
    # such that arr[i] is equal to B[i % M]
    B = [0] * (M)
 
    # Stores frequency of array elements
    counter = [0] * (M + 1)
 
    # Traverse the array arr
    for i in range(0, N):
 
        # If arr[i] is non-zero
        if (arr[i] != 0):
 
            # If B[i % M] is equal to 0
            if (B[i % M] == 0):
 
                # Update B[i % M]
                B[i % M] = arr[i]
 
                # Update frequency of arr[i]
                counter[arr[i]] += 1
 
                # If a duplicate element found
                # in M consecutive elements
                if (counter[arr[i]] > 1):
                    print(0)
                    return
                 
            # Handling the case of
            # inequality
            elif (B[i % M] != arr[i]):
                print(0)
                return
 
    # Stores count of 0s
    # in B
    cnt = 0
 
    # Traverse the array, B
    for i in range(0, M):
 
        # If B[i] is 0
        if (B[i] == 0):
             
            # Update cnt
            cnt += 1
 
    # Calculate factorial
    print(Fact(cnt))
 
# Driver Code
if __name__ == '__main__':
     
    # Given M
    M = 4
     
    # Given array
    arr = [ 1, 0, 3, 0, 0 ]
 
    # Size of the array
    N = len(arr)
 
    # Function Call
    numberOfWays(M, arr, N)
 
# This code is contributed by shikhasingrajput

C#

// C# program for the above approach
using System;
 
class GFG{
 
// Modular function
// to calculate factorial
static int Fact(int N)
{
     
    // Stores factorial of N
    int result = 1;
 
    // Iterate over the range [1, N]
    for(int i = 1; i <= N; i++)
    {
         
        // Update result
        result = (result * i);
    }
    return result;
}
 
// Function to count ways to replace array
// elements having 0s with non-zero elements
// such that any M consecutive elements are distinct
static void numberOfWays(int M, int[] arr, int N)
{
     
    // Store m consecutive distinct elements
    // such that arr[i] is equal to B[i % M]
    int[] B = new int[M];
 
    // Stores frequency of array elements
    int[] counter = new int[M + 1];
 
    // Traverse the array arr[]
    for(int i = 0; i < N; i++)
    {
         
        // If arr[i] is non-zero
        if (arr[i] != 0)
        {
             
            // If B[i % M] is equal to 0
            if (B[i % M] == 0)
            {
                 
                // Update B[i % M]
                B[i % M] = arr[i];
 
                // Update frequency of arr[i]
                counter[arr[i]]++;
 
                // If a duplicate element found
                // in M consecutive elements
                if (counter[arr[i]] > 1)
                {
                    Console.WriteLine(0);
                    return;
                }
            }
 
            // Handling the case of
            // inequality
            else if (B[i % M] != arr[i])
            {
                Console.WriteLine(0);
                return;
            }
        }
    }
 
    // Stores count of 0s
    // in B[]
    int cnt = 0;
 
    // Traverse the array, B[]
    for(int i = 0; i < M; i++)
    {
         
        // If B[i] is 0
        if (B[i] == 0)
        {
             
            // Update cnt
            cnt++;
        }
    }
 
    // Calculate factorial
    Console.WriteLine(Fact(cnt));
}
 
// Driver Code
static public void Main()
{
     
    // Given M
    int M = 4;
 
    // Given array
    int[] arr = new int[]{ 1, 0, 3, 0, 0 };
 
    // Size of the array
    int N = arr.Length;
 
    // Function Call
    numberOfWays(M, arr, N);
}
}
 
// This code is contributed by Dharanendra L V

Javascript

<script>
 
// Javascript program of the above approach
 
// Modular function
// to calculate factorial
function Fact(N)
{
      
    // Stores factorial of N
    let result = 1;
  
    // Iterate over the range [1, N]
    for(let i = 1; i <= N; i++)
    {
          
        // Update result
        result = (result * i);
    }
    return result;
}
  
// Function to count ways to replace array
// elements having 0s with non-zero elements
// such that any M consecutive elements are distinct
function numberOfWays(M, arr, N)
{
      
    // Store m consecutive distinct elements
    // such that arr[i] is equal to B[i % M]
    let B = new Array(M).fill(0);
  
    // Stores frequency of array elements
    let counter = new Array(M+1).fill(0);
  
    // Traverse the array arr[]
    for(let i = 0; i < N; i++)
    {
          
        // If arr[i] is non-zero
        if (arr[i] != 0)
        {
              
            // If B[i % M] is equal to 0
            if (B[i % M] == 0)
            {
                  
                // Update B[i % M]
                B[i % M] = arr[i];
  
                // Update frequency of arr[i]
                counter[arr[i]]++;
  
                // If a duplicate element found
                // in M consecutive elements
                if (counter[arr[i]] > 1)
                {
                    document.write(0);
                    return;
                }
            }
  
            // Handling the case of
            // inequality
            else if (B[i % M] != arr[i])
            {
                document.write(0);
                return;
            }
        }
    }
  
    // Stores count of 0s
    // in B[]
    let cnt = 0;
  
    // Traverse the array, B[]
    for(let i = 0; i < M; i++)
    {
          
        // If B[i] is 0
        if (B[i] == 0)
        {
              
            // Update cnt
            cnt++;
        }
    }
  
    // Calculate factorial
    document.write(Fact(cnt));
}
 
    // Driver Code
     
          // Given M
    let M = 4;
  
    // Given array
    let arr = [ 1, 0, 3, 0, 0 ];
  
    // Size of the array
    let N = arr.length;
  
    // Function Call
    numberOfWays(M, arr, N);
  
</script>
Producción: 

2

 

Complejidad temporal: O(N)
Espacio auxiliar: O(N)

Publicación traducida automáticamente

Artículo escrito por ujjwalgoel1103 y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *