Dado un árbol y los pesos (en forma de strings) de todos los Nodes, la tarea es contar los Nodes cuyos pesos son palíndromos.
Ejemplos:
Input:
Output: 3 Only the weights of the nodes 2, 3 and 5 are palindromes.
Enfoque: Realice dfs en el árbol y para cada Node, verifique si su string es palíndromo o no. Si es así, entonces incremente el conteo.
Implementación:
C++
// C++ implementation of the approach #include <bits/stdc++.h> using namespace std; int cnt = 0; vector<int> graph[100]; vector<string> weight(100); // Function that returns true // if x is a palindrome bool isPalindrome(string x) { int n = x.size(); for (int i = 0; i < n / 2; i++) { if (x[i] != x[n - 1 - i]) return false; } return true; } // Function to perform dfs void dfs(int node, int parent) { // Weight of the current node string x = weight[node]; // If the weight is a palindrome if (isPalindrome(x)) cnt += 1; for (int to : graph[node]) { if (to == parent) continue; dfs(to, node); } } // Driver code int main() { // Weights of the node weight[1] = "abc"; weight[2] = "aba"; weight[3] = "bcb"; weight[4] = "moh"; weight[5] = "aa"; // Edges of the tree graph[1].push_back(2); graph[2].push_back(3); graph[2].push_back(4); graph[1].push_back(5); dfs(1, 1); cout << cnt; return 0; }
Java
// Java implementation of the approach import java.util.*; class GFG { static int cnt = 0; static Vector<Vector<Integer>> graph = new Vector<Vector<Integer>>(); static Vector<String> weight = new Vector<String>(); // Function that returns true // if x is a palindrome static boolean isPalindrome(String x) { int n = x.length(); for (int i = 0; i < n / 2; i++) { if (x.charAt(i) != x.charAt(n - 1 - i)) return false; } return true; } // Function to perform dfs static void dfs(int node, int parent) { // Weight of the current node String x = weight.get(node); // If the weight is a palindrome if (isPalindrome(x)) cnt += 1; for (int i=0;i<graph.get(node).size();i++) { if ( graph.get(node).get(i)== parent) continue; dfs(graph.get(node).get(i), node); } } // Driver code public static void main(String args[]) { // Weights of the node weight.add( ""); weight.add( "abc"); weight.add( "aba"); weight.add( "bcb"); weight.add( "moh"); weight.add( "aa"); for(int i = 0; i < 100; i++) graph.add(new Vector<Integer>()); // Edges of the tree graph.get(1).add(2); graph.get(2).add(3); graph.get(2).add(4); graph.get(1).add(5); dfs(1, 1); System.out.println( cnt); } } // This code is contributed by Arnab Kundu
Python3
# Python3 implementation of the approach cnt = 0 graph = [0] * 100 for i in range(100): graph[i] = [] weight = ["0"] * 100 # Function that returns true # if x is a palindrome def isPalindrome(x): n = len(x) for i in range(0, n // 2): if x[i] != x[n - 1 - i]: return False return True # Function to perform dfs def dfs(node, parent): global cnt # Weight of the current node x = weight[node] # If the weight is a palindrome if (isPalindrome(x)): cnt += 1 for to in graph[node]: if to == parent: continue dfs(to, node) # Driver Code if __name__ == "__main__": # Weights of the node weight[0] = "" weight[1] = "abc" weight[2] = "aba" weight[3] = "bcb" weight[4] = "moh" weight[5] = "aa" # Edges of the tree graph[1].append(2) graph[2].append(3) graph[2].append(4) graph[1].append(5) dfs(1, 1) print(cnt) # This code is contributed by # sanjeev2552
C#
// C# implementation of the approach using System; using System.Collections.Generic; class GFG { static int cnt = 0; static List<List<int>> graph = new List<List<int>>(); static List<String> weight = new List<String>(); // Function that returns true // if x is a palindrome static bool isPalindrome(string x) { int n = x.Length; for (int i = 0; i < n / 2; i++) { if (x[i] != x[n - 1 - i]) return false; } return true; } // Function to perform dfs static void dfs(int node, int parent) { // Weight of the current node String x = weight[node]; // If the weight is a palindrome if (isPalindrome(x)) cnt += 1; for (int i = 0; i < graph[node].Count; i++) { if (graph[node][i] == parent) continue; dfs(graph[node][i], node); } } // Driver code public static void Main(String []args) { // Weights of the node weight.Add( ""); weight.Add( "abc"); weight.Add( "aba"); weight.Add( "bcb"); weight.Add( "moh"); weight.Add( "aa"); for(int i = 0; i < 100; i++) graph.Add(new List<int>()); // Edges of the tree graph[1].Add(2); graph[2].Add(3); graph[2].Add(4); graph[1].Add(5); dfs(1, 1); Console.WriteLine( cnt); } } // This code has been contributed by 29AjayKumar
Javascript
<script> // Javascript implementation of the approach let cnt = 0; let graph = new Array(100); let weight = new Array(100); for(let i = 0; i < 100; i++) { graph[i] = []; weight[i] = 0; } // Function that returns true // if x is a palindrome function isPalindrome(x) { let n = x.length; for(let i = 0; i < n / 2; i++) { if (x[i] != x[n - 1 - i]) return false; } return true; } // Function to perform dfs function dfs(node, parent) { // Weight of the current node let x = weight[node]; // If the weight is a palindrome if (isPalindrome(x)) cnt += 1; for(let to = 0; to < graph[node].length; to++) { if (graph[node][to] == parent) continue dfs(graph[node][to], node); } } // Driver code // Weights of the node weight[1] = "abc"; weight[2] = "aba"; weight[3] = "bcb"; weight[4] = "moh"; weight[5] = "aa"; // Edges of the tree graph[1].push(2); graph[2].push(3); graph[2].push(4); graph[1].push(5); dfs(1, 1); document.write(cnt); // This code is contributed by Dharanendra L V. </script>
Producción:
3
Análisis de Complejidad:
- Complejidad de tiempo: O(N*Len) donde Len es la longitud máxima de la string ponderada de un Node en el árbol dado.
En DFS, cada Node del árbol se procesa una vez y, por lo tanto, la complejidad debida al DFS es O(N) para N Nodes en el árbol. Además, el procesamiento de cada Node implica atravesar la string ponderada de ese Node una vez, lo que agrega una complejidad de O (Len) donde Len es la longitud de la string ponderada. Por lo tanto, la complejidad temporal total es O(N*Len). - Espacio Auxiliar: O(1).
No se requiere ningún espacio adicional, por lo que la complejidad del espacio es constante.
Publicación traducida automáticamente
Artículo escrito por mohit kumar 29 y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA