Cuente los Nodes del árbol dado cuyo peso tiene X como factor

Dado un árbol y los pesos de todos los Nodes, la tarea es contar los Nodes cuyos pesos son divisibles por x .
Ejemplos: 
 

Aporte: 
 

x = 5 
Salida:
Solo los Nodes 1 y 2 tienen pesos divisibles por 5. 
 

Enfoque: Realice dfs en el árbol y para cada Node, verifique si su peso es divisible por x o no. Si es así, entonces incremente el conteo.
Implementación: 
 

C++

// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
long ans = 0;
int x;
vector<int> graph[100];
vector<int> weight(100);
 
// Function to perform dfs
void dfs(int node, int parent)
{
 
    // If weight of the current node
    // is divisible by x
    if (weight[node] % x == 0)
        ans += 1;
 
    for (int to : graph[node]) {
        if (to == parent)
            continue;
        dfs(to, node);
    }
}
 
// Driver code
int main()
{
    x = 5;
 
    // Weights of the node
    weight[1] = 5;
    weight[2] = 10;
    weight[3] = 11;
    weight[4] = 8;
    weight[5] = 6;
 
    // Edges of the tree
    graph[1].push_back(2);
    graph[2].push_back(3);
    graph[2].push_back(4);
    graph[1].push_back(5);
 
    dfs(1, 1);
 
    cout << ans;
 
    return 0;
}

Java

// Java implementation of the approach
import java.util.*;
 
class GFG
{
     
static long ans = 0;
static int x;
static Vector<Vector<Integer>> graph=new Vector<Vector<Integer>>();
static Vector<Integer> weight=new Vector<Integer>();
 
// Function to perform dfs
static void dfs(int node, int parent)
{
 
    // If weight of the current node
    // is divisible by x
    if (weight.get(node) % x == 0)
        ans += 1;
 
    for (int i = 0; i < graph.get(node).size(); i++)
    {
        if (graph.get(node).get(i) == parent)
            continue;
        dfs(graph.get(node).get(i), node);
    }
}
 
// Driver code
public static void main(String args[])
{
    x = 5;
 
    // Weights of the node
    weight.add(0);
    weight.add(5);
    weight.add(10);;
    weight.add(11);;
    weight.add(8);
    weight.add(6);
     
    for(int i = 0; i < 100; i++)
    graph.add(new Vector<Integer>());
 
    // Edges of the tree
    graph.get(1).add(2);
    graph.get(2).add(3);
    graph.get(2).add(4);
    graph.get(1).add(5);
 
    dfs(1, 1);
 
    System.out.println(ans);
}
}
 
// This code is contributed by Arnab Kundu

Python3

# Python3 implementation of the approach
ans = 0
 
graph = [[] for i in range(100)]
weight = [0] * 100
 
# Function to perform dfs
def dfs(node, parent):
    global ans,x
     
    # If weight of the current node
    # is divisible by x
    if (weight[node] % x == 0):
        ans += 1
    for to in graph[node]:
        if (to == parent):
            continue
        dfs(to, node)
 
# Driver code
x = 5
 
# Weights of the node
weight[1] = 5
weight[2] = 10
weight[3] = 11
weight[4] = 8
weight[5] = 6
 
# Edges of the tree
graph[1].append(2)
graph[2].append(3)
graph[2].append(4)
graph[1].append(5)
 
dfs(1, 1)
print(ans)
 
# This code is contributed by SHUBHAMSINGH10

C#

// C# implementation of the approach
using System;
using System.Collections.Generic;
 
class GFG
{
     
static long ans = 0;
static int x;
static List<List<int>> graph = new List<List<int>>();
static List<int> weight = new List<int>();
 
// Function to perform dfs
static void dfs(int node, int parent)
{
 
    // If weight of the current node
    // is divisible by x
    if (weight[node] % x == 0)
        ans += 1;
 
    for (int i = 0; i < graph[node].Count; i++)
    {
        if (graph[node][i] == parent)
            continue;
        dfs(graph[node][i], node);
    }
}
 
// Driver code
public static void Main(String []args)
{
    x = 5;
 
    // Weights of the node
    weight.Add(0);
    weight.Add(5);
    weight.Add(10);;
    weight.Add(11);;
    weight.Add(8);
    weight.Add(6);
     
    for(int i = 0; i < 100; i++)
    graph.Add(new List<int>());
 
    // Edges of the tree
    graph[1].Add(2);
    graph[2].Add(3);
    graph[2].Add(4);
    graph[1].Add(5);
 
    dfs(1, 1);
 
    Console.WriteLine(ans);
}
}
 
// This code contributed by Rajput-Ji

Javascript

<script>
  
// Javascript implementation of the approach
     
    
let ans = 0;
let x;
 
let graph = new Array(100);
let weight = new Array(100);
for(let i = 0; i < 100; i++)
{
    graph[i] = [];
    weight[i] = 0;
}
 
// Function to perform dfs
function dfs(node, parent)
{
    // If weight of the current node
    // is divisible by x
    if (weight[node] % x == 0)
        ans += 1;
 
    for(let to=0;to<graph[node].length;to++) {
        if(graph[node][to] == parent)
            continue
        dfs(graph[node][to], node); 
    }
}
 
// Driver code
    x = 5;
 
    // Weights of the node
    weight[1] = 5;
    weight[2] = 10;
    weight[3] = 11;
    weight[4] = 8;
    weight[5] = 6;
 
    // Edges of the tree
    graph[1].push(2);
    graph[2].push(3);
    graph[2].push(4);
    graph[1].push(5);
 
    dfs(1, 1);
 
    document.write(ans);
 
    // This code is contributed by Dharanendra L V.
      
</script>
Producción: 

2

 

Análisis de Complejidad: 
 

  • Complejidad temporal: O(N). 
    En DFS, cada Node del árbol se procesa una vez y, por lo tanto, la complejidad debida al DFS es O(N) cuando hay un total de N Nodes en el árbol. Por lo tanto, la complejidad del tiempo es O(N).
  • Espacio Auxiliar: O(1). 
    No se requiere ningún espacio adicional, por lo que la complejidad del espacio es constante.

Publicación traducida automáticamente

Artículo escrito por mohit kumar 29 y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *