Distribuya M objetos a partir de la persona S de modo que cada i-ésima persona obtenga arr[i] objetos

Dada una array arr[] que consta de N enteros ( indexación basada en 1 ) y dos enteros M y S , la tarea es distribuir M objetos entre N personas, comenzando desde la posición S , de modo que la i -ésima persona obtenga como máximo arr [i] objetos cada vez.

Ejemplos:

Entrada: arr[] = {2, 3, 2, 1, 4}, M = 11, S = 2
Salida: 1, 3, 2, 1, 4
Explicación: La distribución de M (= 11) objetos a partir de S ª (= 2) persona es la siguiente:

  • Para arr[2](= 3): Dar 3 objetos a la persona. Ahora, el número total de objetos se reduce a (11 – 3) = 8.
  • Para arr[3] (= 2): Dar 2 objetos a la persona. Ahora, el número total de objetos se reduce a (8 – 2) = 6.
  • Para arr[4] (= 1): Dar 1 objeto a la persona. Ahora, el número total de objetos se reduce a (6 – 1) = 5.
  • Para arr[5] (= 4): Dar 4 objetos a la persona. Ahora, el número total de objetos se reduce a (5 – 4) = 1.
  • Para arr[1] (= 1): Dar 1 objeto a la persona. Ahora, el número total de objetos reducido a (1 – 1) = 0.

Por lo tanto, la distribución de objetos es {1, 3, 2, 1, 4}.

Entrada: arr[] = {2, 3, 2, 1, 4}, M = 3, S = 4
Salida: 0 0 0 1 2

Enfoque: el problema dado se puede resolver recorriendo la array desde el índice inicial S y distribuyendo el máximo de objetos a cada elemento de la array. Siga los pasos a continuación para resolver el problema dado:

  • Inicialice una array auxiliar, digamos distribution[] con todos los elementos como 0 para almacenar la distribución de M objetos .
  • Inicialice dos variables, digamos ptr y rem como S y M respectivamente, para almacenar el índice inicial y los M objetos restantes .
  • Iterar hasta que rem sea positivo y realizar los siguientes pasos:
    • Si el valor de rem es al menos el elemento en el índice ptr , es decir, arr[ptr] , entonces incremente el valor de distribution[ptr] en arr[ptr] y disminuya el valor de rem en arr[ptr] .
    • De lo contrario, incremente la distribución[ptr] por rem y actualice rem igual a 0 .
    • Actualice ptr igual a (ptr + 1) % N para iterar la array dada arr[] de forma cíclica.
  • Después de completar los pasos anteriores, imprima la distribución [] como la distribución resultante de objetos.

A continuación se muestra la implementación del enfoque anterior:

C++

// C++ program for the above approach
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to find distribution of
// M objects among all array elements
void distribute(int N, int K,
                int M, int arr[])
{
    // Stores the distribution
    // of M objects
    int distribution[N] = { 0 };
 
    // Stores the indices
    // of distribution
    int ptr = K - 1;
 
    // Stores the remaining objects
    int rem = M;
 
    // Iterate until rem is positive
    while (rem > 0) {
 
        // If the number of remaining
        // objects exceeds required
        // the number of objects
        if (rem >= arr[ptr]) {
 
            // Increase the number of objects
            // for the index ptr by arr[ptr]
            distribution[ptr] += arr[ptr];
 
            // Decrease remaining
            // objects by arr[ptr]
            rem -= arr[ptr];
        }
        else {
 
            // Increase the number of objects
            // for the index ptr by rem
            distribution[ptr] += rem;
 
            // Decrease remaining
            // objects to 0
            rem = 0;
        }
 
        // Increase ptr by 1
        ptr = (ptr + 1) % N;
    }
 
    // Print the final distribution
    for (int i = 0; i < N; i++) {
        cout << distribution[i]
             << " ";
    }
}
 
// Driver Code
int main()
{
    int arr[] = { 2, 3, 2, 1, 4 };
    int M = 11, S = 2;
    int N = sizeof(arr) / sizeof(arr[0]);
 
    distribute(N, S, M, arr);
 
    return 0;
}

Java

// Java program for the above approach
import java.io.*;
import java.lang.*;
import java.util.*;
 
class GFG {
 
  // Function to find distribution of
  // M objects among all array elements
  static void distribute(int N, int K, int M, int arr[])
  {
    // Stores the distribution
    // of M objects
    int distribution[] = new int[N];
 
    // Stores the indices
    // of distribution
    int ptr = K - 1;
 
    // Stores the remaining objects
    int rem = M;
 
    // Iterate until rem is positive
    while (rem > 0) {
 
      // If the number of remaining
      // objects exceeds required
      // the number of objects
      if (rem >= arr[ptr]) {
 
        // Increase the number of objects
        // for the index ptr by arr[ptr]
        distribution[ptr] += arr[ptr];
 
        // Decrease remaining
        // objects by arr[ptr]
        rem -= arr[ptr];
      }
      else {
 
        // Increase the number of objects
        // for the index ptr by rem
        distribution[ptr] += rem;
 
        // Decrease remaining
        // objects to 0
        rem = 0;
      }
 
      // Increase ptr by 1
      ptr = (ptr + 1) % N;
    }
 
    // Print the final distribution
    for (int i = 0; i < N; i++) {
      System.out.print(distribution[i] + " ");
    }
  }
 
  // Driver Code
  public static void main(String[] args)
  {
 
    int arr[] = { 2, 3, 2, 1, 4 };
    int M = 11, S = 2;
    int N = arr.length;
 
    distribute(N, S, M, arr);
  }
}
 
// This code is contributed by Kingash.

Python3

# Python3 program for the above approach
 
# Function to find distribution of
# M objects among all array elements
def distribute(N, K, M, arr):
 
    # Stores the distribution
    # of M objects
    distribution = [0] * N
 
    # Stores the indices
    # of distribution
    ptr = K - 1
 
    # Stores the remaining objects
    rem = M
 
    # Iterate until rem is positive
    while (rem > 0):
 
        # If the number of remaining
        # objects exceeds required
        # the number of objects
        if (rem >= arr[ptr]):
 
            # Increase the number of objects
            # for the index ptr by arr[ptr]
            distribution[ptr] += arr[ptr]
 
            # Decrease remaining
            # objects by arr[ptr]
            rem -= arr[ptr]
         
        else:
 
            # Increase the number of objects
            # for the index ptr by rem
            distribution[ptr] += rem
 
            # Decrease remaining
            # objects to 0
            rem = 0
         
        # Increase ptr by 1
        ptr = (ptr + 1) % N
     
    # Print the final distribution
    for i in range(N):
        print(distribution[i], end = " ")
     
# Driver Code
arr = [ 2, 3, 2, 1, 4 ]
M = 11
S = 2
N = len(arr)
 
distribute(N, S, M, arr)
 
# This code is contributed by sanjoy_62

C#

// C# program for the above approach
using System;
 
class GFG{
 
// Function to find distribution of
// M objects among all array elements
static void distribute(int N, int K,
                       int M, int []arr)
{
     
    // Stores the distribution
    // of M objects
    int []distribution = new int[N];
     
    // Stores the indices
    // of distribution
    int ptr = K - 1;
     
    // Stores the remaining objects
    int rem = M;
     
    // Iterate until rem is positive
    while (rem > 0)
    {
     
        // If the number of remaining
        // objects exceeds required
        // the number of objects
        if (rem >= arr[ptr])
        {
             
            // Increase the number of objects
            // for the index ptr by arr[ptr]
            distribution[ptr] += arr[ptr];
             
            // Decrease remaining
            // objects by arr[ptr]
            rem -= arr[ptr];
        }
        else
        {
         
            // Increase the number of objects
            // for the index ptr by rem
            distribution[ptr] += rem;
             
            // Decrease remaining
            // objects to 0
            rem = 0;
        }
         
        // Increase ptr by 1
        ptr = (ptr + 1) % N;
    }
     
    // Print the final distribution
    for(int i = 0; i < N; i++)
    {
        Console.Write(distribution[i] + " ");
    }
}
 
// Driver Code
public static void Main(string[] args)
{
    int []arr = { 2, 3, 2, 1, 4 };
    int M = 11, S = 2;
    int N = arr.Length;
     
    distribute(N, S, M, arr);
}
}
 
// This code is contributed by AnkThon

Javascript

<script>
        // Javascript program for the above approach
 
        // Function to find distribution of
        // M objects among all array elements
        function distribute( N,  K,
             M,  arr)
        {
            // Stores the distribution
            // of M objects
            let distribution = new Array(N)
             
            for (let i = 0; i < N; i++) {
                distribution[i]=0
            }
            // Stores the indices
            // of distribution
            let ptr = K - 1;
 
            // Stores the remaining objects
            let rem = M;
 
            // Iterate until rem is positive
            while (rem > 0) {
 
                // If the number of remaining
                // objects exceeds required
                // the number of objects
                if (rem >= arr[ptr]) {
 
                    // Increase the number of objects
                    // for the index ptr by arr[ptr]
                    distribution[ptr] += arr[ptr];
 
                    // Decrease remaining
                    // objects by arr[ptr]
                    rem -= arr[ptr];
                }
                else {
 
                    // Increase the number of objects
                    // for the index ptr by rem
                    distribution[ptr] += rem;
 
                    // Decrease remaining
                    // objects to 0
                    rem = 0;
                }
 
                // Increase ptr by 1
                ptr = (ptr + 1) % N;
            }
 
            // Print the final distribution
            for (let i = 0; i < N; i++) {
                document.write(distribution[i]+" ")
            }
        }
 
        // Driver Code
      
        let arr = [ 2, 3, 2, 1, 4 ];
        let M = 11, S = 2;
        let N = arr.length
        distribute(N, S, M, arr);
 
        // This code is contributed by Hritik
    </script>
Producción: 

1 3 2 1 4

 

Complejidad temporal: O(M)
Espacio auxiliar: O(N)

Publicación traducida automáticamente

Artículo escrito por mamtagarg915 y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *