Dados dos arreglos, la operación a realizar es que todos los elementos de a[] deben dividirse por todos los elementos de b[] y su valor mínimo debe calcularse.
Ejemplos:
Input : a[] = {5, 100, 8}, b[] = {2, 3} Output : 0 16 1 Explanation : Size of a[] is 3. Size of b[] is 2. Now 5 has to be divided by the elements of array b[] i.e. 5 is divided by 2, then the quotient obtained is divided by 3 and the floor value of this is calculated. The same process is repeated for the other array elements.
Primer enfoque : esta solución es de complejidad O (n * m) donde el tamaño de a [] es n y el tamaño de la array b [] es m. En esta solución, arreglamos los elementos del arreglo a[] y lo iteramos con los elementos del arreglo b[].
Segundo enfoque : en este método hemos utilizado matemáticas simples. Primero encontramos el producto del arreglo B y luego lo dividimos por cada elemento del arreglo de a[]
La complejidad de esta solución es O(n).
Implementación:
C++
// CPP program to find quotient of array // elements #include <bits/stdc++.h> using namespace std; // Function to calculate the quotient // of every element of the array void calculate(int a[], int b[], int n, int m) { int mul = 1; // Calculate the product of all elements for (int i = 0 ; i < m ; i++) if (b[i] != 0) mul = mul * b[i]; // To calculate the quotient of every // array element for (int i = 0 ; i < n ; i++) { int x = floor(a[i] / mul); cout << x << " "; } } // Driver code int main() { int a[] = {5 , 100 , 8}; int b[] = {2 , 3}; int n = sizeof(a)/sizeof(a[0]); int m = sizeof(b)/sizeof(b[0]); calculate(a, b, n, m); return 0; }
Java
// Java program to find quotient of array // elements import java.io.*; class GFG { // Function to calculate the quotient // of every element of the array static void calculate(int a[], int b[], int n, int m) { int mul = 1; // Calculate the product of all // elements for (int i = 0; i < m; i++) if (b[i] != 0) mul = mul * b[i]; // To calculate the quotient of every // array element for (int i = 0; i < n; i++) { int x = (int)Math.floor(a[i] / mul); System.out.print(x + " "); } } public static void main(String[] args) { int a[] = { 5, 100, 8 }; int b[] = { 2, 3 }; int n = a.length; int m = b.length; calculate(a, b, n, m); } } // This code is contributed by Ajit.
Python3
# Python3 program to find # quotient of arrayelements import math # Function to calculate the quotient # of every element of the array def calculate(a, b, n, m): mul = 1 # Calculate the product # of all elements for i in range(m): if (b[i] != 0): mul = mul * b[i] # To calculate the quotient # of every array element for i in range(n): x = math.floor(a[i] / mul) print(x, end = " ") # Driver code a = [ 5, 100, 8 ] b = [ 2, 3 ] n = len(a) m = len(b) calculate(a, b, n, m) # This code is contributed by Anant Agarwal.
C#
// C# program to find quotient // of array elements using System; class GFG { // Function to calculate the quotient // of every element of the array static void calculate(int []a, int []b, int n, int m) { int mul = 1; // Calculate the product of all // elements for (int i = 0; i < m; i++) if (b[i] != 0) mul = mul * b[i]; // To calculate the quotient of every // array element for (int i = 0; i < n; i++) { int x = (int)Math.Floor((double)(a[i] / mul)); Console.Write(x + " "); } } // Driver code public static void Main() { int []a = { 5, 100, 8 }; int []b = { 2, 3 }; int n = a.Length; int m = b.Length; calculate(a, b, n, m); } } // This code is contributed by Anant Agarwal.
PHP
<?php // PHP program to find // quotient of array elements // Function to calculate // the quotient of every // element of the array function calculate( $a, $b, $n, $m) { $mul = 1; // Calculate the product // of all elements for ( $i = 0 ; $i < $m ; $i++) if ($b[$i] != 0) $mul = $mul * $b[$i]; // To calculate the quotient // of every array element for ( $i = 0 ; $i < $n ; $i++) { $x = floor($a[$i] / $mul); echo $x , " "; } } // Driver code $a = array(5 , 100 , 8); $b = array(2 , 3); $n = count($a); $m = count($b); calculate($a, $b, $n, $m); // This code is contributed by anuju_67. ?>
Javascript
<script> // JavaScript program to find quotient of array // elements // Function to calculate the quotient // of every element of the array function calculate(a, b, n, m) { let mul = 1; // Calculate the product of all elements for (let i = 0 ; i < m ; i++) if (b[i] != 0) mul = mul * b[i]; // To calculate the quotient of every // array element for (let i = 0 ; i < n ; i++) { let x = Math.floor(a[i] / mul); document.write(x + " "); } } // Driver code let a = [5 , 100 , 8]; let b = [2 , 3]; let n = a.length; let m = b.length; calculate(a, b, n, m); // This code is contributed by Surbhi Tyagi </script>
0 16 1
Publicación traducida automáticamente
Artículo escrito por agrawalmohak99 y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA