Dada una array arr[] que consta de N enteros, la tarea es dividir la array en dos subconjuntos de modo que el recuento de elementos únicos en ambos subconjuntos sea el mismo y para cada elemento, imprima 1 si ese elemento pertenece al primer subconjunto . De lo contrario, imprima 2 . Si no es posible hacer tal partición, imprima «-1» .
Ejemplos:
Entrada: arr[] = {1, 1, 2, 3, 4, 4}
Salida: 1 1 1 2 1 1
Explicación: Considere el primer y segundo subconjunto de la partición de la array como {1, 1, 2, 4 4} y {3}. Ahora, la partición de subconjuntos anterior tiene la misma cantidad de elementos distintos.Entrada: arr[] = {1, 1, 2, 2, 3}
Salida: -1
Enfoque ingenuo: el problema dado se puede resolver generando todas las particiones posibles de los elementos de la array en dos subconjuntos y, si existe alguna partición cuyo recuento de elementos distintos sea el mismo, imprima 1 y 2 de acuerdo con el conjunto respectivo de los elementos de la array . a. De lo contrario, imprima «-1» ya que no existe ninguna partición posible de la array.
Complejidad temporal: O(N*2 N )
Espacio auxiliar: O(N)
Enfoque eficiente: el enfoque anterior también se puede optimizar encontrando la frecuencia de elementos de array únicos si la frecuencia es impar, entonces no existe tal partición posible. De lo contrario, imprima la partición del subconjunto en consecuencia. Siga los pasos a continuación para resolver el problema:
- Inicialice un mapa , diga M para almacenar la frecuencia de todos los elementos de la array .
- Inicialice la array, digamos ans[] que almacena el número de subconjunto al que pertenece cada elemento de la array.
- Encuentre el conteo de los elementos únicos en la array contando el elemento que tiene la frecuencia 1 en el mapa M . Sea esta cuenta C .
- Si el valor de C es par , mueva la mitad de estos elementos al primer subconjunto marcando esos elementos como 1 y reste todos los elementos como 2 en la array ans[] .
- De lo contrario, verifique si existe algún elemento que tenga una frecuencia mayor que 2 , luego cambie una instancia de ese elemento al segundo subconjunto. De lo contrario, imprima «-1» .
A continuación se muestra la implementación del enfoque anterior:
C++
// C++ program for the above approach #include <bits/stdc++.h> using namespace std; // Function to partition the array into // two subsets such that count of unique // elements in both subsets is the same void arrayPartition(int a[], int n) { // Stores the subset number for // each array elements int ans[n]; // Stores the count of unique // array elements int cnt = 0; int ind, flag = 0; // Stores the frequency of elements map<int, int> mp; // Traverse the array for (int i = 0; i < n; i++) { mp[a[i]]++; } // Count of elements having a // frequency of 1 for (int i = 0; i < n; i++) { if (mp[a[i]] == 1) cnt++; // Check if there exists any // element with frequency > 2 if (mp[a[i]] > 2 && flag == 0) { flag = 1; ind = i; } } // Count of elements needed to // have frequency exactly 1 in // each subset int p = (cnt + 1) / 2; int ans1 = 0; // Initialize all values in the /// array ans[] as 1 for (int i = 0; i < n; i++) ans[i] = 1; // Traverse the array ans[] for (int i = 0; i < n; i++) { // This array element is a // part of first subset if (mp[a[i]] == 1 && ans1 < p) { ans[i] = 1; ans1++; } // Half array elements with // frequency 1 are part of // the second subset else if (mp[a[i]] == 1) { ans[i] = 2; } } // If count of elements is exactly // 1 are odd and has no element // with frequency > 2 if (cnt % 2 == 1 && flag == 0) { cout << -1 << endl; return; } // If count of elements that occurs // exactly once are even if (cnt % 2 == 0) { // Print the result for (int i = 0; i < n; i++) { cout << ans[i] << " "; } } // If the count of elements has // exactly 1 frequency are odd // and there is an element with // frequency greater than 2 else { // Print the result for (int i = 0; i < n; i++) { if (ind == i) cout << 2 << " "; else cout << ans[i] << " "; } } } // Driver Codea int main() { int arr[] = { 1, 1, 2, 3, 4, 4 }; int N = sizeof(arr) / sizeof(arr[0]); arrayPartition(arr, N); return 0; }
Java
// Java program for the above approach import java.util.HashMap; class GFG{ // Function to partition the array into // two subsets such that count of unique // elements in both subsets is the same public static void arrayPartition(int a[], int n) { // Stores the subset number for // each array elements int[] ans = new int[n]; // Stores the count of unique // array elements int cnt = 0; int ind = 0, flag = 0; // Stores the frequency of elements HashMap<Integer, Integer> mp = new HashMap<Integer, Integer>(); // Traverse the array for (int i = 0; i < n; i++) { if(mp.containsKey(a[i])){ mp.put(a[i], mp.get(a[i]) + 1); }else{ mp.put(a[i], 1); } } // Count of elements having a // frequency of 1 for (int i = 0; i < n; i++) { if (mp.get(a[i]) == 1) cnt++; // Check if there exists any // element with frequency > 2 if (mp.get(a[i]) > 2 && flag == 0) { flag = 1; ind = i; } } // Count of elements needed to // have frequency exactly 1 in // each subset int p = (cnt + 1) / 2; int ans1 = 0; // Initialize all values in the /// array ans[] as 1 for (int i = 0; i < n; i++) ans[i] = 1; // Traverse the array ans[] for (int i = 0; i < n; i++) { // This array element is a // part of first subset if (mp.get(a[i]) == 1 && ans1 < p) { ans[i] = 1; ans1++; } // Half array elements with // frequency 1 are part of // the second subset else if (mp.get(a[i]) == 1) { ans[i] = 2; } } // If count of elements is exactly // 1 are odd and has no element // with frequency > 2 if (cnt % 2 == 1 && flag == 0) { System.out.println(-1 + "\n"); return; } // If count of elements that occurs // exactly once are even if (cnt % 2 == 0) { // Print the result for (int i = 0; i < n; i++) { System.out.print(ans[i] + " "); } } // If the count of elements has // exactly 1 frequency are odd // and there is an element with // frequency greater than 2 else { // Print the result for (int i = 0; i < n; i++) { if (ind == i) System.out.print(2 + " "); else System.out.print(ans[i] + " "); } } } // Driver Codea public static void main(String args[]) { int arr[] = { 1, 1, 2, 3, 4, 4 }; int N = arr.length; arrayPartition(arr, N); } } // This code is contributed by gfgking.
Python3
# Python3 program for the above approach # Function to partition the array into # two subsets such that count of unique # elements in both subsets is the same def arrayPartition(a, n): # Stores the subset number for # each array elements ans = [0] * n # Stores the count of unique # array elements cnt = 0 ind, flag = 0, 0 # Stores the frequency of elements mp = {} # Traverse the array for i in a: mp[i] = mp.get(i, 0) + 1 # Count of elements having a # frequency of 1 for i in range(n): if ((a[i] in mp) and mp[a[i]] == 1): cnt += 1 # Check if there exists any # element with frequency > 2 if (mp[a[i]] > 2 and flag == 0): flag = 1 ind = i # Count of elements needed to # have frequency exactly 1 in # each subset p = (cnt + 1) // 2 ans1 = 0 # Initialize all values in the # array ans[] as 1 for i in range(n): ans[i] = 1 # Traverse the array ans[] for i in range(n): # This array element is a # part of first subset if ((a[i] in mp) and mp[a[i]] == 1 and ans1 < p): ans[i] = 1 ans1 += 1 # Half array elements with # frequency 1 are part of # the second subset elif ((a[i] in mp) and mp[a[i]] == 1): ans[i] = 2 # If count of elements is exactly # 1 are odd and has no element # with frequency > 2 if (cnt % 2 == 1 and flag == 0): print (-1) return # If count of elements that occurs # exactly once are even if (cnt % 2 == 0): # Print the result print(*ans) # If the count of elements has # exactly 1 frequency are odd # and there is an element with # frequency greater than 2 else: # Print the result for i in range(n): if (ind == i): print(2, end = " ") else: print(ans[i], end = " ") # Driver Codea if __name__ == '__main__': arr = [ 1, 1, 2, 3, 4, 4 ] N = len(arr) arrayPartition(arr, N) # This code is contributed by mohit kumar 29
C#
// C# program for the above approach using System; using System.Collections.Generic; class GFG{ // Function to partition the array into // two subsets such that count of unique // elements in both subsets is the same static void arrayPartition(int []a, int n) { // Stores the subset number for // each array elements int []ans = new int[n]; // Stores the count of unique // array elements int cnt = 0; int ind=0, flag = 0; // Stores the frequency of elements Dictionary<int,int> mp = new Dictionary<int,int>(); // Traverse the array for (int i = 0; i < n; i++) { if(mp.ContainsKey(a[i])) mp[a[i]]++; else mp.Add(a[i],1); } // Count of elements having a // frequency of 1 for (int i = 0; i < n; i++) { if (mp.ContainsKey(a[i]) && mp[a[i]] == 1) cnt++; // Check if there exists any // element with frequency > 2 if (mp.ContainsKey(a[i]) && mp[a[i]] > 2 && flag == 0) { flag = 1; ind = i; } } // Count of elements needed to // have frequency exactly 1 in // each subset int p = (cnt + 1) / 2; int ans1 = 0; // Initialize all values in the /// array ans[] as 1 for (int i = 0; i < n; i++) ans[i] = 1; // Traverse the array ans[] for (int i = 0; i < n; i++) { // This array element is a // part of first subset if (mp.ContainsKey(a[i]) && mp[a[i]] == 1 && ans1 < p) { ans[i] = 1; ans1++; } // Half array elements with // frequency 1 are part of // the second subset else if (mp.ContainsKey(a[i]) && mp[a[i]] == 1) { ans[i] = 2; } } // If count of elements is exactly // 1 are odd and has no element // with frequency > 2 if (cnt % 2 == 1 && flag == 0) { Console.Write(-1); return; } // If count of elements that occurs // exactly once are even if (cnt % 2 == 0) { // Print the result for (int i = 0; i < n; i++) { Console.Write(ans[i] + " "); } } // If the count of elements has // exactly 1 frequency are odd // and there is an element with // frequency greater than 2 else { // Print the result for (int i = 0; i < n; i++) { if (ind == i) Console.Write(2 + " "); else Console.Write(ans[i] + " "); } } } // Driver Codea public static void Main() { int []arr = { 1, 1, 2, 3, 4, 4 }; int N = arr.Length; arrayPartition(arr, N); } } // This code is contributed by SURENDRA_GANGWAR.
Javascript
<script> // JavaScript program for the above approach // Function to partition the array into // two subsets such that count of unique // elements in both subsets is the same function arrayPartition(a, n) { // Stores the subset number for // each array elements let ans = new Array(n); // Stores the count of unique // array elements let cnt = 0; let ind, flag = 0; // Stores the frequency of elements let mp = new Map(); // Traverse the array for (let i = 0; i < n; i++) { if (mp.has(a[i])) { mp.set(a[i], mp.get(a[i]) + 1) } else { mp.set(a[i], 1) } } // Count of elements having a // frequency of 1 for (let i = 0; i < n; i++) { if (mp.get(a[i]) == 1) cnt++; // Check if there exists any // element with frequency > 2 if (mp.get(a[i]) > 2 && flag == 0) { flag = 1; ind = i; } } // Count of elements needed to // have frequency exactly 1 in // each subset let p = Math.floor((cnt + 1) / 2); let ans1 = 0; // Initialize all values in the /// array ans[] as 1 for (let i = 0; i < n; i++) ans[i] = 1; // Traverse the array ans[] for (let i = 0; i < n; i++) { // This array element is a // part of first subset if (mp.get(a[i]) == 1 && ans1 < p) { ans[i] = 1; ans1++; } // Half array elements with // frequency 1 are part of // the second subset else if (mp.get(a[i]) == 1) { ans[i] = 2; } } // If count of elements is exactly // 1 are odd and has no element // with frequency > 2 if (cnt % 2 == 1 && flag == 0) { document.write(-1 + "<br>"); return; } // If count of elements that occurs // exactly once are even if (cnt % 2 == 0) { // Print the result for (let i = 0; i < n; i++) { document.write(ans[i] + " "); } } // If the count of elements has // exactly 1 frequency are odd // and there is an element with // frequency greater than 2 else { // Print the result for (let i = 0; i < n; i++) { if (ind == i) document.write(2 + " "); else document.write(ans[i] << " "); } } } // Driver Codea let arr = [1, 1, 2, 3, 4, 4]; let N = arr.length arrayPartition(arr, N); </script>
1 1 1 2 1 1
Complejidad temporal: O(N)
Espacio auxiliar: O(1)
Publicación traducida automáticamente
Artículo escrito por ujjwalgoel1103 y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA