Dado el centro del círculo (x1, y1) y su radio r, encuentre la ecuación del círculo que tiene centro (x1, y1) y radio r.
Ejemplos:
Entrada: x1 = 2, y1 = -3, r = 8
Salida: x^2 + y^2 – 4*x + 6*y = 51.
Entrada: x1 = 0, y1 = 0, r = 2
Salida: x ^2 + y^2 – 0*x + 0*y = 4.
Planteamiento:
Dado el centro del círculo (x1, y1) y su radio r, tenemos que encontrar la ecuación del círculo que tiene centro (x1, y1) y radio r.
la ecuación del círculo con centro (x1, y1) y radio r viene dada por:-
al expandir la ecuación anterior
al organizar arriba obtenemos
A continuación se muestra la implementación del enfoque anterior:
C++
// CPP program to find the equation // of circle. #include <iostream> using namespace std; // Function to find the equation of circle void circle_equation(double x1, double y1, double r) { double a = -2 * x1; double b = -2 * y1; double c = (r * r) - (x1 * x1) - (y1 * y1); // Printing result cout << "x^2 + (" << a << " x) + "; cout << "y^2 + (" << b << " y) = "; cout << c << "." << endl; } // Driver code int main() { double x1 = 2, y1 = -3, r = 8; circle_equation(x1, y1, r); return 0; }
Java
// Java program to find the equation // of circle. import java.util.*; class solution { // Function to find the equation of circle static void circle_equation(double x1, double y1, double r) { double a = -2 * x1; double b = -2 * y1; double c = (r * r) - (x1 * x1) - (y1 * y1); // Printing result System.out.print("x^2 + (" +a+ " x) + "); System.out.print("y^2 + ("+b + " y) = "); System.out.println(c +"." ); } // Driver code public static void main(String arr[]) { double x1 = 2, y1 = -3, r = 8; circle_equation(x1, y1, r); } }
Python3
# Python3 program to find the # equation of circle. # Function to find the # equation of circle def circle_equation(x1, y1, r): a = -2 * x1; b = -2 * y1; c = (r * r) - (x1 * x1) - (y1 * y1); # Printing result print("x^2 + (", a, "x) + ", end = ""); print("y^2 + (", b, "y) = ", end = ""); print(c, "."); # Driver code x1 = 2; y1 = -3; r = 8; circle_equation(x1, y1, r); # This code is contributed # by mits
C#
// C# program to find the equation // of circle. using System; class GFG { // Function to find the equation of circle public static void circle_equation(double x1, double y1, double r) { double a = -2 * x1; double b = -2 * y1; double c = (r * r) - (x1 * x1) - (y1 * y1); // Printing result Console.Write("x^2 + (" + a + " x) + "); Console.Write("y^2 + ("+ b + " y) = "); Console.WriteLine(c + "." ); } // Driver code public static void Main(string []arr) { double x1 = 2, y1 = -3, r = 8; circle_equation(x1, y1, r); } } // This code is contributed // by SoumkMondal
PHP
<?php // PHP program to find the equation // of circle. // Function to find the // equation of circle function circle_equation($x1, $y1, $r) { $a = -2 * $x1; $b = -2 * $y1; $c = ($r * $r) - ($x1 * $x1) - ($y1 * $y1); // Printing result echo "x^2 + (" . $a . " x) + "; echo "y^2 + (" . $b . " y) = "; echo $c . "." . "\n"; } // Driver code $x1 = 2; $y1 = -3; $r = 8; circle_equation($x1, $y1, $r); // This code is contributed // by Akanksha Rai ?>
Javascript
<script> // java script program to find the equation // of circle. // Function to find the // equation of circle function circle_equation(x1, y1, r) { let a = -2 * x1; let b = -2 * y1; let c = (r * r) - (x1 * x1) - (y1 * y1); // Printing result document.write( "x^2 + (" +a + " x) + "); document.write( "y^2 + (" +b+ " y) = "); document.write( c+ "<br>"); } // Driver code let x1 = 2; let y1 = -3; let r = 8; circle_equation(x1, y1, r); // This code is contributed by sravan kumar </script>
x^2 + (-4 x) + y^2 + (6 y) = 51.
Complejidad temporal: O(1), ya que no hay bucle ni recursividad.
Espacio Auxiliar: O(1), ya que no se ha ocupado ningún espacio extra.
Publicación traducida automáticamente
Artículo escrito por Amber_Saxena y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA