Cilindro circular recto más grande dentro de un tronco

Dado un tronco de altura  h     , radio superior  r     y radio base  R     . La tarea es encontrar el volumen del cilindro circular recto más grande que se puede inscribir dentro de él.
Ejemplos: 
 

Input  : r = 5, R = 10, h = 4
Output : 314

Input : r = 7, R = 11, h = 6
Output : 923.16

Enfoque
Sea: 
 

  • La altura del cilindro = h1
  • Radio del cilindro = r1

De la figura es claro que: 
 

  • Altura del cilindro = Altura del tronco
  • Radio del cilindro = Rop-radio del tronco

Asi que, 
 

h1 = h
r1 = r

A continuación se muestra la implementación del enfoque anterior: 
 

C++

// C++ Program to find the biggest right circular cylinder
// that can be fit within a frustum
#include <bits/stdc++.h>
using namespace std;
 
// Function to find the biggest right circular cylinder
float cyl(float r, float R, float h)
{
    // radii and height cannot be negative
    if (h < 0 && r < 0 && R < 0)
        return -1;
 
    // radius of right circular cylinder
    float r1 = r;
    // height of right circular cylinder
    float h1 = h;
    // volume of right circular cylinder
    float V = 3.14 * pow(r1, 2) * h1;
 
    return V;
}
 
// Driver code
int main()
{
    float r = 7, R = 11, h = 6;
 
    cout << cyl(r, R, h) << endl;
 
    return 0;
}

Java

// Java Program to find the biggest right circular cylinder
// that can be fit within a frustum
 
import java.io.*;
 
class GFG {
 
 
// Function to find the biggest right circular cylinder
 static float cyl(float r, float R, float h)
{
    // radii and height cannot be negative
    if (h < 0 && r < 0 && R < 0)
        return -1;
 
    // radius of right circular cylinder
    float r1 = r;
    // height of right circular cylinder
    float h1 = h;
    // volume of right circular cylinder
    float V = (float)(3.14 * Math.pow(r1, 2) * h1);
 
    return V;
}
 
// Driver code
    public static void main (String[] args) {
            float r = 7, R = 11, h = 6;
 
    System.out.print( cyl(r, R, h));
    }
}
// This code is contributed by anuj_67..

Python3

# Python3 Program to find the biggest right circular cylinder
# that can be fit within a frustum
 
# Function to find the biggest right circular cylinder
def cyl(r, R, h) :
 
    # radii and height cannot be negative
    if (h < 0 and r < 0 and R < 0) :
        return -1
 
    # radius of right circular cylinder
    r1 = r
    # height of right circular cylinder
    h1 = h
    # volume of right circular cylinder
    V = 3.14 * pow(r1, 2) * h1
 
    return round(V,2)
 
 
# Driver code
if __name__ == "__main__" :
 
    r, R, h = 7, 11, 6
 
    print(cyl(r, R, h))
 
# This code is contributed by Ryuga

C#

// C# Program to find the biggest right circular cylinder
// that can be fit within a frustum
using System;
 
class GFG {
 
 
// Function to find the biggest right circular cylinder
static float cyl(float r, float R, float h)
{
    // radii and height cannot be negative
    if (h < 0 && r < 0 && R < 0)
        return -1;
 
    // radius of right circular cylinder
    float r1 = r;
    // height of right circular cylinder
    float h1 = h;
    // volume of right circular cylinder
    float V = (float)(3.14 * Math.Pow(r1, 2) * h1);
 
    return V;
}
 
// Driver code
    public static void Main () {
            float r = 7, R = 11, h = 6;
 
    Console.WriteLine( cyl(r, R, h));
    }
}
// This code is contributed by anuj_67..

PHP

<?php
// PHP Program to find the biggest
// right circular cylinder that can
// be fit within a frustum
 
// Function to find the biggest
// right circular cylinder
function cyl($r, $R, $h)
{
    // radii and height cannot be negative
    if ($h < 0 && $r < 0 && $R < 0)
        return -1;
 
    // radius of right circular cylinder
    $r1 = $r;
     
    // height of right circular cylinder
    $h1 = $h;
     
    // volume of right circular cylinder
    $V = (3.14 * pow($r1, 2) * $h1);
 
    return $V;
}
 
// Driver code
$r = 7; $R = 11; $h = 6;
 
echo cyl($r, $R, $h);
     
// This code is contributed
// by Mukul Singh.

Javascript

<script>
// javascript Program to find the biggest right circular cylinder
// that can be fit within a frustum
 
// Function to find the biggest right circular cylinder
 function cyl(r , R , h)
{
 
    // radii and height cannot be negative
    if (h < 0 && r < 0 && R < 0)
        return -1;
 
    // radius of right circular cylinder
    var r1 = r;
     
    // height of right circular cylinder
    var h1 = h;
     
    // volume of right circular cylinder
    var V = (3.14 * Math.pow(r1, 2) * h1);
    return V;
}
 
// Driver code
var r = 7, R = 11, h = 6;
document.write( cyl(r, R, h).toFixed(5));
 
// This code is contributed by Princi Singh
</script>
Producción: 

923.16

 

Complejidad de tiempo: O(1)

Espacio Auxiliar: O(1)

Publicación traducida automáticamente

Artículo escrito por IshwarGupta y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *