Aquí se da un cubo de longitud de lado a . Tenemos que encontrar la altura y el radio del cono circular recto más grande que se puede inscribir en él.
Ejemplos :
Input : a = 6 Output : r = 4.24264, h = 6 Input : a = 10 Output : r = 7.07107, h = 10
Aproximación :
Sea altura del cono = h .
y, radio del cono = r .
Del diagrama, podemos entender claramente que,
- r = a/√2
- h = un
A continuación se muestra la implementación del enfoque anterior:
C++
// C++ Program to find the biggest cone // inscribed within a cube #include <bits/stdc++.h> using namespace std; // Function to find the radius of the cone float coneRadius(float a) { // side cannot be negative if (a < 0) return -1; // radius of the cone float r = a / sqrt(2); return r; } // Function to find the height of the cone float coneHeight(float a) { // side cannot be negative if (a < 0) return -1; // height of the cone float h = a; return h; } // Driver code int main() { float a = 6; cout << "r = " << coneRadius(a) << ", " << "h = " << coneHeight(a) << endl; return 0; }
Java
// Java Program to find the biggest // cone inscribed within a cube import java.util.*; import java.lang.*; class GFG { // Function to find the radius // of the cone static float coneRadius(float a) { // side cannot be negative if (a < 0) return -1; // radius of the cone float r = (float)(a / Math.sqrt(2)); return r; } // Function to find the height // of the cone static float coneHeight(float a) { // side cannot be negative if (a < 0) return -1; // height of the cone float h = a; return h; } // Driver code public static void main(String args[]) { float a = 6; System.out.println("r = " + coneRadius(a) + ", " + "h = " + coneHeight(a)); } } // This code is contributed // by Akanksha Rai
Python 3
# Python 3 Program to find the biggest # cone inscribed within a cube import math # Function to find the radius # of the cone def coneRadius(a): # side cannot be negative if (a < 0): return -1 # radius of the cone r = a / math.sqrt(2) return r # Function to find the height of the cone def coneHeight(a): # side cannot be negative if (a < 0): return -1 # height of the cone h = a return h # Driver code if __name__ == "__main__": a = 6 print("r = ", coneRadius(a) , "h = ", coneHeight(a)) # This code is contributed by ChitraNayal
C#
// C# Program to find the biggest // cone inscribed within a cube using System; class GFG { // Function to find the radius // of the cone static float coneRadius(float a) { // side cannot be negative if (a < 0) return -1; // radius of the cone float r = (float)(a / Math.Sqrt(2)); return r; } // Function to find the height // of the cone static float coneHeight(float a) { // side cannot be negative if (a < 0) return -1; // height of the cone float h = a; return h; } // Driver code public static void Main() { float a = 6; Console.WriteLine("r = " + coneRadius(a) + ", " + "h = " + coneHeight(a)); } } // This code is contributed // by Akanksha Rai
PHP
<?php // PHP Program to find the biggest // cone inscribed within a cube // Function to find the radius // of the cone function coneRadius($a) { // side cannot be negative if ($a < 0) return -1; // radius of the cone $r = $a / sqrt(2); return $r; } // Function to find the height // of the cone function coneHeight($a) { // side cannot be negative if ($a < 0) return -1; // height of the cone $h = $a; return $h; } // Driver code $a = 6; echo ("r = "); echo coneRadius($a); echo (", "); echo ("h = "); echo (coneHeight($a)); // This code is contributed // by Shivi_Aggarwal ?>
Javascript
<script> // javascript Program to find the biggest // cone inscribed within a cube // Function to find the radius // of the cone function coneRadius(a) { // side cannot be negative if (a < 0) return -1; // radius of the cone var r = (a / Math.sqrt(2)); return r; } // Function to find the height // of the cone function coneHeight(a) { // side cannot be negative if (a < 0) return -1; // height of the cone var h = a; return h; } // Driver code var a = 6; document.write("r = " + coneRadius(a).toFixed(5) + ", " + "h = " + coneHeight(a)); // This code is contributed by 29AjayKumar </script>
Producción:
r = 4.24264, h = 6
Complejidad de tiempo: O(1)
Espacio Auxiliar: O(1)
Publicación traducida automáticamente
Artículo escrito por IshwarGupta y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA