Dado un semicírculo de radio r , tenemos que encontrar el cuadrado más grande que se puede inscribir en el semicírculo, con base en el diámetro.
Ejemplos:
Input: r = 5 Output: 20 Input: r = 8 Output: 51.2
Enfoque : Sea r el radio del semicírculo &a la longitud del lado del cuadrado .
De la figura podemos ver que el centro del círculo es también el punto medio de la base del cuadrado. Entonces, en el triángulo rectángulo AOB , del Teorema de Pitágoras :
a^2 + (a/2)^2 = r^2
5*(a^2/4) = r^2
a^2 = 4*(r^2/5) es decir, área del cuadrado
A continuación se muestra la implementación del enfoque anterior :
C++
// C++ Program to find the biggest square // which can be inscribed within the semicircle #include <bits/stdc++.h> using namespace std; // Function to find the area // of the square float squarearea(float r) { // the radius cannot be negative if (r < 0) return -1; // area of the square float a = 4 * (pow(r, 2) / 5); return a; } // Driver code int main() { float r = 5; cout << squarearea(r) << endl; return 0; }
Java
// Java Program to find the biggest square // which can be inscribed within the semicircle import java.io.*; class GFG { // Function to find the area // of the square static float squarearea(float r) { // the radius cannot be negative if (r < 0) return -1; // area of the square float a = 4 * (float)(Math.pow(r, 2) / 5); return a; } // Driver code public static void main (String[] args) { float r = 5; System.out.println( squarearea(r)); } } // This code is contributed by chandan_jnu.
Python3
# Python 3 program to find the # biggest square which can be # inscribed within the semicircle # Function to find the area # of the square def squarearea(r): # the radius cannot be # negative if (r < 0): return -1 # area of the square a = 4 * (pow(r, 2) / 5) return a # Driver code if __name__ == "__main__": r = 5 print(int(squarearea(r))) # This code is contributed # by ChitraNayal
C#
// C# Program to find the // biggest square which can be // inscribed within the semicircle using System; class GFG { // Function to find the // area of the square static float squarearea(float r) { // the radius cannot be negative if (r < 0) return -1; // area of the square float a = 4 * (float)(Math.Pow(r, 2) / 5); return a; } // Driver code public static void Main () { float r = 5; Console.WriteLine(squarearea(r)); } } // This code is contributed // by anuj_67
PHP
<?php // PHP Program to find the // biggest square which can be // inscribed within the semicircle // Function to find the area // of the square function squarearea($r) { // the radius cannot be negative if ($r < 0) return -1; // area of the square $a = 4 * (pow($r, 2) / 5); return $a; } // Driver code $r = 5; echo squarearea($r); // This code is contributed // by Shivi_Aggarwal ?>
Javascript
<script> // javascript Program to find the biggest square // which can be inscribed within the semicircle // Function to find the area // of the square function squarearea(r) { // the radius cannot be negative if (r < 0) return -1; // area of the square var a = 4 * (Math.pow(r, 2) / 5); return a; } // Driver code var r = 5; document.write( squarearea(r)); // This code contributed by Princi Singh </script>
20
Complejidad de tiempo: O(1)
Espacio Auxiliar: O(1)
Publicación traducida automáticamente
Artículo escrito por IshwarGupta y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA