Número par más grande que se puede formar con cualquier cantidad de swaps

Dado un número entero N en forma de string, la tarea es encontrar el número par más grande del número dado cuando se le permite hacer cualquier cantidad de intercambios (intercambiar los dígitos del número). Si no se puede formar un número par, imprima -1 .

Ejemplos: 

Entrada: N = 1324 
Salida: 4312

Entrada: N = 135 
Salida: -1 
Ningún número par se puede formar usando dígitos impares.

Enfoque: ordene la string en orden descendente, luego obtendremos el número más grande posible con el dígito dado, pero puede ser o no un número par. Para hacerlo par (si no lo está ya), se debe intercambiar un dígito par del número con el último dígito y para maximizar el número par, el dígito par que se va a intercambiar debe ser el dígito par más pequeño del número. número. 

Tenga en cuenta que la clasificación se puede realizar en tiempo lineal utilizando una array de frecuencias para los dígitos del número, ya que la cantidad de elementos distintos que se necesitan clasificar puede ser como máximo 10 en el peor de los casos.

A continuación se muestra la implementación del enfoque anterior: 

C++

// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
const int MAX = 10;
 
// Function to return the maximum
// even number that can be formed
// with any number of digit swaps
string getMaxEven(string str, int len)
{
 
    // To store the frequencies of
    // all the digits
    int freq[MAX] = { 0 };
 
    // To store the minimum even digit
    // and the minimum overall digit
    int i, minEvenDigit = MAX;
    for (i = 0; i < len; i++) {
        int digit = str[i] - '0';
        freq[digit]++;
 
        // If digit is even then update
        // the minimum even digit
        if (digit % 2 == 0)
            minEvenDigit = min(digit, minEvenDigit);
    }
 
    // If there is no even digit then
    // it is not possible to generate
    // an even number with swaps
    if (minEvenDigit == MAX)
        return "-1";
 
    // Decrease the frequency of the
    // digits that need to be swapped
    freq[minEvenDigit]--;
 
    i = 0;
    // Take every digit starting from the maximum
    // in order to maximize the number
    for (int j = MAX - 1; j >= 0; j--) {
 
        // Take current digit number of times
        // it appeared in the original number
        for (int k = 0; k < freq[j]; k++)
            str[i++] = (char)(j + '0');
    }
 
    // Append once instance of the minimum
    // even digit in the end to make the number even
    str[i] = (char)(minEvenDigit + '0');
 
    return str;
}
 
// Driver code
int main()
{
    string str = "1023422";
    int len = str.length();
 
    // Function call
    cout << getMaxEven(str, len);
 
    return 0;
}

Java

// Java implementation of the approach
class GFG {
 
    static int MAX = 10;
 
    // Function to return the maximum
    // even number that can be formed
    // with any number of digit swaps
    static String getMaxEven(String str, int len)
    {
      //To store the max even number
        String maxEven="";
        // To store the frequencies of
        // all the digits
        int[] freq = new int[MAX];
 
        // To store the minimum even digit
        int i, minEvenDigit = MAX;
        for (i = 0; i < len; i++) {
            int digit = str.charAt(i) - '0';
            freq[digit]++;
 
            // If digit is even then update
            // the minimum even digit
            if (digit % 2 == 0)
                minEvenDigit
                    = Math.min(digit, minEvenDigit);
 
        }
 
        // If there is no even digit then
        // it is not possible to generate
        // an even number with swaps
        if (minEvenDigit == MAX)
            return "-1";
 
        // Decrease the frequency of the
        // minEvenDigit
        freq[minEvenDigit]--;
         
 
        i = MAX-1;
 
        // Take every digit starting from the maximum
        // in order to maximize the number
       while(i>=0)
       {
           // Take current digit number of times
            // it appeared in the original number
           if(freq[i]>0)
           {
             maxEven= maxEven+i;
             freq[i]--;
           }else
             i--;
             
        }
 
        // Append the minimum even digit
        // in the end to make the number even
         maxEven= maxEven+minEvenDigit;
 
        return maxEven;
    }
 
    // Driver code
    public static void main(String[] args)
    {
        String str = "1023422";
        int len = str.length();
 
        // Function call
        System.out.println(getMaxEven(str, len));
    }
}

Python3

# Python3 implementation of the approach
 
MAX = 10
 
# Function to return the maximum
# even number that can be formed
# with any number of digit swaps
 
 
def getMaxEven(string, length):
 
    string = list(string)
 
    # To store the frequencies of
    # all the digits
    freq = [0]*MAX
 
    # To store the minimum even digit
    # and the minimum overall digit
    minEvenDigit = MAX
    minDigit = MAX
    for i in range(length):
        digit = ord(string[i]) - ord('0')
        freq[digit] += 1
 
        # If digit is even then update
        # the minimum even digit
        if (digit % 2 == 0):
            minEvenDigit = min(digit, minEvenDigit)
 
        # Update the overall minimum digit
        minDigit = min(digit, minDigit)
 
    # If there is no even digit then
    # it is not possible to generate
    # an even number with swaps
    if (minEvenDigit == MAX):
        return "-1"
 
    # Decrease the frequency of the
    # digits that need to be swapped
    freq[minEvenDigit] -= 1
    freq[minDigit] -= 1
 
    i = 0
 
    # Take every digit starting from the maximum
    # in order to maximize the number
    for j in range(MAX - 1, -1, -1):
 
        # Take current digit number of times
        # it appeared in the original number
        for k in range(freq[j]):
            string[i] = chr(j + ord('0'))
            i += 1
 
        # If current digit equals to the
        # minimum even digit then one instance of it
        # needs to be swapped with the minimum overall digit
        # i.e. append the minimum digit here
        if (j == minEvenDigit):
            string[i] = chr(minDigit + ord('0'))
            i += 1
 
    # Append once instance of the minimum
    # even digit in the end to make the number even
    string[-1] = chr(minEvenDigit + ord('0'))
 
    return "".join(string)
 
 
# Driver code
if __name__ == "__main__":
    string = "1023422"
    length = len(string)
 
    # Function call
    print(getMaxEven(string, length))
 
# This code is contributed by AnkitRai01

C#

// C# implementation of the approach
using System;
 
class GFG {
 
    static int MAX = 10;
 
    // Function to return the maximum
    // even number that can be formed
    // with any number of digit swaps
    static String getMaxEven(char[] str, int len)
    {
 
        // To store the frequencies of
        // all the digits
        int[] freq = new int[MAX];
 
        // To store the minimum even digit
        // and the minimum overall digit
        int i, minEvenDigit = MAX, minDigit = MAX;
        for (i = 0; i < len; i++) {
            int digit = str[i] - '0';
            freq[digit]++;
 
            // If digit is even then update
            // the minimum even digit
            if (digit % 2 == 0)
                minEvenDigit
                    = Math.Min(digit, minEvenDigit);
 
            // Update the overall minimum digit
            minDigit = Math.Min(digit, minDigit);
        }
 
        // If there is no even digit then
        // it is not possible to generate
        // an even number with swaps
        if (minEvenDigit == MAX)
            return "-1";
 
        // Decrease the frequency of the
        // digits that need to be swapped
        freq[minEvenDigit]--;
        freq[minDigit]--;
 
        i = 0;
 
        // Take every digit starting from the maximum
        // in order to maximize the number
        for (int j = MAX - 1; j >= 0; j--) {
 
            // Take current digit number of times
            // it appeared in the original number
            for (int k = 0; k < freq[j]; k++)
                str[i++] = (char)(j + '0');
 
            // If current digit equals to the
            // minimum even digit then one instance of it
            // needs to be swapped with the minimum overall
            // digit i.e. append the minimum digit here
            if (j == minEvenDigit)
                str[i++] = (char)(minDigit + '0');
        }
 
        // Append once instance of the minimum
        // even digit in the end to make the number even
        str[i - 1] = (char)(minEvenDigit + '0');
 
        return String.Join("", str);
    }
 
    // Driver code
    public static void Main(String[] args)
    {
        char[] str = "1023422".ToCharArray();
        int len = str.Length;
 
        // Function call
        Console.WriteLine(getMaxEven(str, len));
    }
}
 
// This code has been contributed by 29AjayKumar

Javascript

<script>
    // Javascript implementation of the approach
     
    let MAX = 10;
  
    // Function to return the maximum
    // even number that can be formed
    // with any number of digit swaps
    function getMaxEven(str, len)
    {
  
        // To store the frequencies of
        // all the digits
        let freq = new Array(MAX);
        freq.fill(0);
  
        // To store the minimum even digit
        // and the minimum overall digit
        let i, minEvenDigit = MAX, minDigit = MAX;
        for (i = 0; i < len; i++) {
            let digit = str[i].charCodeAt() - '0'.charCodeAt();
            freq[digit]++;
  
            // If digit is even then update
            // the minimum even digit
            if (digit % 2 == 0)
                minEvenDigit
                    = Math.min(digit, minEvenDigit);
  
            // Update the overall minimum digit
            minDigit = Math.min(digit, minDigit);
        }
  
        // If there is no even digit then
        // it is not possible to generate
        // an even number with swaps
        if (minEvenDigit == MAX)
            return "-1";
  
        // Decrease the frequency of the
        // digits that need to be swapped
        freq[minEvenDigit]--;
        freq[minDigit]--;
  
        i = 0;
  
        // Take every digit starting from the maximum
        // in order to maximize the number
        for (let j = MAX - 1; j >= 0; j--) {
  
            // Take current digit number of times
            // it appeared in the original number
            for (let k = 0; k < freq[j]; k++)
                str[i++] = String.fromCharCode(j + '0'.charCodeAt());
  
            // If current digit equals to the
            // minimum even digit then one instance of it
            // needs to be swapped with the minimum overall
            // digit i.e. append the minimum digit here
            if (j == minEvenDigit)
                str[i++] = String.fromCharCode(minDigit + '0'.charCodeAt());
        }
  
        // Append once instance of the minimum
        // even digit in the end to make the number even
        str[i - 1] = String.fromCharCode(minEvenDigit + '0'.charCodeAt());
  
        return str.join("");
    }
     
    let str = "1023422".split('');
    let len = str.length;
 
    // Function call
    document.write(getMaxEven(str, len));
     
</script>
Producción: 

4322210

 

Complejidad temporal: O(n + MAX)

Espacio Auxiliar: O(MAX)
 

Publicación traducida automáticamente

Artículo escrito por md1844 y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *