Dadas dos arrays enteras arr[] y cost[] donde cost[i] es el costo de elegir arr[i] . La tarea es elegir un subconjunto con al menos dos elementos, de modo que el MCD de todos los elementos del subconjunto sea 1 y el costo de elegir esos elementos sea el mínimo posible, luego imprima el costo mínimo.
Ejemplos:
Entrada: arr[] = {5, 10, 12, 1}, costo[] = {2, 1, 2, 6}
Salida: 4
{5, 12} es el subconjunto requerido con costo = 2 + 2 = 4
Entrada : arr[] = {50, 100, 150, 200, 300}, cost[] = {2, 3, 4, 5, 6} Salida: -1 No es posible subconjunto
con gcd
= 1
Enfoque: agregue GCD de dos elementos cualquiera a un mapa, ahora para cada elemento arr[i] calcule su gcd con todos los valores de gcd encontrados hasta ahora (guardados en el mapa) y actualice map[gcd] = min(map[gcd] , mapa[mcd] + costo[i]) . Si al final, el mapa no contiene ninguna entrada para gcd = 1 , imprima -1; de lo contrario, imprima el costo mínimo almacenado.
A continuación se muestra la implementación del enfoque anterior:
C++
// C++ implementation of the approach #include <bits/stdc++.h> using namespace std; // Function to return the minimum cost required int getMinCost(int arr[], int n, int cost[]) { // Map to store <gcd, cost> pair where // cost is the cost to get the current gcd map<int, int> mp; mp.clear(); mp[0] = 0; for (int i = 0; i < n; i++) { for (auto it : mp) { int gcd = __gcd(arr[i], it.first); // If current gcd value already exists in map if (mp.count(gcd) == 1) // Update the minimum cost // to get the current gcd mp[gcd] = min(mp[gcd], it.second + cost[i]); else mp[gcd] = it.second + cost[i]; } } // If there can be no sub-set such that // the gcd of all the elements is 1 if (mp[1] == 0) return -1; else return mp[1]; } // Driver code int main() { int arr[] = { 5, 10, 12, 1 }; int cost[] = { 2, 1, 2, 6 }; int n = sizeof(arr) / sizeof(arr[0]); cout << getMinCost(arr, n, cost); return 0; }
Java
// Java implementation of the approach import java.util.*; import java.util.concurrent.ConcurrentHashMap; class GFG{ // Function to return the minimum cost required static int getMinCost(int arr[], int n, int cost[]) { // Map to store <gcd, cost> pair where // cost is the cost to get the current gcd Map<Integer,Integer> mp = new ConcurrentHashMap<Integer,Integer>(); mp.clear(); mp.put(0, 0); for (int i = 0; i < n; i++) { for (Map.Entry<Integer,Integer> it : mp.entrySet()){ int gcd = __gcd(arr[i], it.getKey()); // If current gcd value already exists in map if (mp.containsKey(gcd)) // Update the minimum cost // to get the current gcd mp.put(gcd, Math.min(mp.get(gcd), it.getValue() + cost[i])); else mp.put(gcd,it.getValue() + cost[i]); } } // If there can be no sub-set such that // the gcd of all the elements is 1 if (!mp.containsKey(1)) return -1; else return mp.get(1); } static int __gcd(int a, int b) { return b == 0? a:__gcd(b, a % b); } // Driver code public static void main(String[] args) { int arr[] = { 5, 10, 12, 1 }; int cost[] = { 2, 1, 2, 6 }; int n = arr.length; System.out.print(getMinCost(arr, n, cost)); } } // This code is contributed by PrinciRaj1992
Python3
# Python3 implementation of the approach from math import gcd as __gcd # Function to return the minimum cost required def getMinCost(arr, n, cost): # Map to store <gcd, cost> pair where # cost is the cost to get the current gcd mp = dict() mp[0] = 0 for i in range(n): for it in list(mp): gcd = __gcd(arr[i], it) # If current gcd value # already exists in map if (gcd in mp): # Update the minimum cost # to get the current gcd mp[gcd] = min(mp[gcd], mp[it] + cost[i]) else: mp[gcd] = mp[it] + cost[i] # If there can be no sub-set such that # the gcd of all the elements is 1 if (mp[1] == 0): return -1 else: return mp[1] # Driver code arr = [ 5, 10, 12, 1] cost = [ 2, 1, 2, 6] n = len(arr) print(getMinCost(arr, n, cost)) # This code is contributed by Mohit Kumar
C#
// C# implementation of the approach using System; using System.Collections.Generic; using System.Linq; class GFG { static int __gcd(int a, int b) { return b == 0? a:__gcd(b, a % b); } // Function to return the minimum cost required static int getMinCost(int[] arr, int n, int[] cost) { // Map to store <gcd, cost> pair where // cost is the cost to get the current gcd Dictionary<int, int> mp = new Dictionary<int, int>(); mp.Add(0, 0); for (int i = 0; i < n; i++) { foreach (int it in mp.Keys.ToList()) { int gcd = __gcd(arr[i], it); // If current gcd value already exists in map if(mp.ContainsKey(gcd)) { // Update the minimum cost // to get the current gcd mp[gcd] = Math.Min(mp[gcd], mp[it] + cost[i]); } else { mp.Add(gcd, mp[it] + cost[i]); } } } // If there can be no sub-set such that // the gcd of all the elements is 1 if (mp[1] == 0) { return -1; } else { return mp[1]; } } // Driver code static public void Main () { int[] arr = { 5, 10, 12, 1 }; int[] cost = { 2, 1, 2, 6 }; int n = arr.Length; Console.WriteLine(getMinCost(arr, n, cost)); } } // This code is contributed by avanitrachhadiya2155
Javascript
<script> // JavaScript implementation of the approach // Function to return the minimum cost required function getMinCost(arr,n,cost) { // Map to store <gcd, cost> pair where // cost is the cost to get the current gcd let mp = new Map(); mp.set(0, 0); for (let i = 0; i < n; i++) { for (let [key, value] of mp.entries()){ let gcd = __gcd(arr[i], key); // If current gcd value already exists in map if (mp.has(gcd)) // Update the minimum cost // to get the current gcd mp.set(gcd, Math.min(mp.get(gcd), value + cost[i])); else mp.set(gcd,value + cost[i]); } } // If there can be no sub-set such that // the gcd of all the elements is 1 if (!mp.has(1)) return -1; else return mp.get(1); } function __gcd(a,b) { return b == 0? a:__gcd(b, a % b); } // Driver code let arr=[5, 10, 12, 1 ]; let cost=[2, 1, 2, 6 ]; let n = arr.length; document.write(getMinCost(arr, n, cost)); // This code is contributed by unknown2108 </script>
4
Complejidad temporal: O(n 2 log(n)) donde n es el número de elementos.
Espacio Auxiliar: O(n)