Dado un número entero N , la tarea es encontrar el número total de factores compuestos de N . Los factores compuestos de un número son los factores que no son primos.
Ejemplos:
Entrada: N = 24
Salida: 5
1, 2, 3, 4, 6, 8, 12 y 24 son los factores de 24.
De los cuales solo 4, 6, 8, 12 y 24 son compuestos.
Entrada: N = 100
Salida: 6
Acercarse:
- Encuentre todos los factores de N y guárdelos en una variable totalFactors
- Encuentre todos los factores primos de N y guárdelos en una variable primeFactors
- Ahora, el total de factores compuestos será totalFactors – primeFactors – 1 (se resta 1 porque 1 no es ni primo ni compuesto).
A continuación se muestra la implementación del enfoque anterior:
C++
// C++ implementation of the approach #include <bits/stdc++.h> using namespace std; // Function to return the count // of prime factors of n int composite_factors(int n) { int count = 0; int i, j; // Initialise array with 0 int a[n + 1] = { 0 }; for (i = 1; i <= n; ++i) { if (n % i == 0) { // Stored i value into an array a[i] = i; } } // Every non-zero value at a[i] denotes // that i is a factor of n for (i = 2; i <= n; i++) { j = 2; int p = 1; // Find if i is prime while (j < a[i]) { if (a[i] % j == 0) { p = 0; break; } j++; } // If i is a factor of n // and i is not prime if (p == 0 && a[i] != 0) { count++; } } return count; } // Driver code int main() { int n = 100; cout << composite_factors(n); return 0; }
Java
// Java implementation of the approach import java.util.*; class Gfg { // Function to return the count // of prime factors of n public static int composite_factors(int n) { int count = 0; int i, j; // Initialise array with 0 int[] a=new int[n+1]; for( i = 0; i < n; i++) { a[i]=0; } for (i = 1; i <= n; ++i) { if (n % i == 0) { // Stored i value into an array a[i] = i; } } // Every non-zero value at a[i] denotes // that i is a factor of n for (i = 2; i <= n; i++) { j = 2; int p = 1; // Find if i is prime while (j < a[i]) { if (a[i] % j == 0) { p = 0; break; } j++; } // If i is a factor of n // and i is not prime if (p == 0 && a[i] != 0) { count++; } } return count; } // Driver code public static void main(String[] args) { int n = 100; System.out.println(composite_factors(n)); } } // This code is contributed by nidhi16bcs2007
Python3
# Python3 implementation of the approach # Function to return the count # of prime factors of n def composite_factors(n) : count = 0; # Initialise array with 0 a = [0]*(n + 1) ; for i in range(1, n + 1) : if (n % i == 0) : # Stored i value into an array a[i] = i; # Every non-zero value at a[i] denotes # that i is a factor of n for i in range(2,n + 1) : j = 2; p = 1; # Find if i is prime while (j < a[i]) : if (a[i] % j == 0) : p = 0; break; j += 1; # If i is a factor of n # and i is not prime if (p == 0 and a[i] != 0) : count += 1; return count; # Driver code if __name__ == "__main__" : n = 100; print(composite_factors(n)); # This code is contributed by AnkitRai01
C#
// C# implementation of the approach using System; class GFG { // Function to return the count // of prime factors of n static int composite_factors(int n) { int count = 0; int i, j; // Initialise array with 0 int[] a = new int[n + 1]; for( i = 0; i < n; i++) { a[i]=0; } for (i = 1; i <= n; ++i) { if (n % i == 0) { // Stored i value into an array a[i] = i; } } // Every non-zero value at a[i] denotes // that i is a factor of n for (i = 2; i <= n; i++) { j = 2; int p = 1; // Find if i is prime while (j < a[i]) { if (a[i] % j == 0) { p = 0; break; } j+=1; } // If i is a factor of n // and i is not prime if (p == 0 && a[i] != 0) { count += 1; } } return count; } // Driver code public static void Main() { int n = 100; Console.WriteLine(composite_factors(n)); } } // This code is contributed by mohit kumar 29
Javascript
<script> // Javascript implementation of the approach // Function to return the count // of prime factors of n function composite_factors(n) { var count = 0; var i, j; // Initialise array with 0 var a = Array(n + 1).fill(0); for (i = 1; i <= n; ++i) { if (n % i == 0) { // Stored i value into an array a[i] = i; } } // Every non-zero value at a[i] denotes // that i is a factor of n for (i = 2; i <= n; i++) { j = 2; var p = 1; // Find if i is prime while (j < a[i]) { if (a[i] % j == 0) { p = 0; break; } j++; } // If i is a factor of n // and i is not prime if (p == 0 && a[i] != 0) { count++; } } return count; } // Driver code var n = 100; document.write(composite_factors(n)); </script>
Producción:
6
Complejidad temporal: O(n*val) donde n es el número dado y val es el factor más grande de n.
Espacio Auxiliar: O(n)