Dado un número N , la tarea es encontrar la suma de los dígitos de un número en lugares pares e impares.
Ejemplos:
Entrada: N = 54873
Salida:
Suma impar = 16
Suma par = 11Entrada: N = 457892
Salida:
Suma impar = 20
Suma par = 15
Acercarse:
- Primero, calcula el reverso del número dado.
- Al número inverso aplicamos el operador de módulo y extraemos su último dígito, que en realidad es el primer dígito de un número, por lo que es un dígito impar.
- El siguiente dígito será un dígito de posición par, y podemos tomar la suma en turnos alternos.
A continuación se muestra la implementación del enfoque anterior:
C++
// C++ implementation of the approach #include <bits/stdc++.h> using namespace std; // Function to return the reverse of a number int reverse(int n) { int rev = 0; while (n != 0) { rev = (rev * 10) + (n % 10); n /= 10; } return rev; } // Function to find the sum of the odd // and even positioned digits in a number void getSum(int n) { n = reverse(n); int sumOdd = 0, sumEven = 0, c = 1; while (n != 0) { // If c is even number then it means // digit extracted is at even place if (c % 2 == 0) sumEven += n % 10; else sumOdd += n % 10; n /= 10; c++; } cout << "Sum odd = " << sumOdd << "\n"; cout << "Sum even = " << sumEven; } // Driver code int main() { int n = 457892; getSum(n); return 0; }
Java
// Java implementation of the approach import java.util.*; class GFG { // Function to return the reverse of a number static int reverse(int n) { int rev = 0; while (n != 0) { rev = (rev * 10) + (n % 10); n /= 10; } return rev; } // Function to find the sum of the odd // and even positioned digits in a number static void getSum(int n) { n = reverse(n); int sumOdd = 0, sumEven = 0, c = 1; while (n != 0) { // If c is even number then it means // digit extracted is at even place if (c % 2 == 0) sumEven += n % 10; else sumOdd += n % 10; n /= 10; c++; } System.out.println("Sum odd = " + sumOdd); System.out.println("Sum even = " + sumEven); } // Driver code public static void main(String args[]) { int n = 457892; getSum(n); } } // This code is contributed by // Surendra_Gangwar
Python3
# Python3 implementation of the approach # Function to return the # reverse of a number def reverse(n): rev = 0 while (n != 0): rev = (rev * 10) + (n % 10) n //= 10 return rev # Function to find the sum of the odd # and even positioned digits in a number def getSum(n): n = reverse(n) sumOdd = 0 sumEven = 0 c = 1 while (n != 0): # If c is even number then it means # digit extracted is at even place if (c % 2 == 0): sumEven += n % 10 else: sumOdd += n % 10 n //= 10 c += 1 print("Sum odd =", sumOdd) print("Sum even =", sumEven) # Driver code n = 457892 getSum(n) # This code is contributed # by mohit kumar
C#
// C# implementation of the approach using System; class GFG { // Function to return the reverse of a number static int reverse(int n) { int rev = 0; while (n != 0) { rev = (rev * 10) + (n % 10); n /= 10; } return rev; } // Function to find the sum of the odd // and even positioned digits in a number static void getSum(int n) { n = reverse(n); int sumOdd = 0, sumEven = 0, c = 1; while (n != 0) { // If c is even number then it means // digit extracted is at even place if (c % 2 == 0) sumEven += n % 10; else sumOdd += n % 10; n /= 10; c++; } Console.WriteLine("Sum odd = " + sumOdd); Console.WriteLine("Sum even = " + sumEven); } // Driver code public static void Main() { int n = 457892; getSum(n); } } // This code is contributed by // Akanksha Rai
PHP
<?php // PHP implementation of the above approach // Function to return the reverse of a number function reverse($n) { $rev = 0; while ($n != 0) { $rev = ($rev * 10) + ($n % 10); $n = floor($n / 10); } return $rev; } // Function to find the sum of the odd // and even positioned digits in a number function getSum($n) { $n = reverse($n); $sumOdd = 0; $sumEven = 0; $c = 1; while ($n != 0) { // If c is even number then it means // digit extracted is at even place if ($c % 2 == 0) $sumEven += $n % 10; else $sumOdd += $n % 10; $n = floor($n / 10); $c++; } echo "Sum odd = ", $sumOdd, "\n"; echo "Sum even = ", $sumEven; } // Driver code $n = 457892; getSum($n); // This code is contributed by Ryuga ?>
Javascript
<script> //JavaScript implementation of the approach // Function to return the // reverse of a number function reverse(n) { let rev = 0; while (n != 0) { rev = (rev * 10) + (n % 10); n = Math.floor(n / 10); } return rev; } // Function to find the sum of the odd // and even positioned digits in a number function getSum(n) { n = reverse(n); let sumOdd = 0, sumEven = 0, c = 1; while (n != 0) { // If c is even number then it means // digit extracted is at even place if (c % 2 == 0) sumEven += n % 10; else sumOdd += n % 10; n = Math.floor(n / 10); c++; } document.write("Sum odd = " + sumOdd); document.write("<br>"); document.write("Sum even = " + sumEven); } let n = 457892; // function call getSum(n); // This code is contributed by Surbhi Tyagi </script>
Sum odd = 20 Sum even = 15
Complejidad temporal: O(n)
Espacio auxiliar: O(1)
Otro enfoque: el problema se puede resolver sin invertir el número. Podemos extraer todos los dígitos del número uno por uno desde el final. Si el número original era impar, el último dígito debe estar en una posición impar, de lo contrario, estará en una posición par. Después de procesar un dígito, podemos invertir el estado de par a impar y viceversa.
A continuación se muestra la implementación del enfoque anterior:
C++
// C++ implementation of the approach #include <bits/stdc++.h> using namespace std; // Function to find the sum of the odd // and even positioned digits in a number void getSum(int n) { // If n is odd then the last digit // will be odd positioned bool isOdd = (n % 2 == 1) ? true : false; // To store the respective sums int sumOdd = 0, sumEven = 0; // While there are digits left process while (n != 0) { // If current digit is odd positioned if (isOdd) sumOdd += n % 10; // Even positioned digit else sumEven += n % 10; // Invert state isOdd = !isOdd; // Remove last digit n /= 10; } cout << "Sum odd = " << sumOdd << "\n"; cout << "Sum even = " << sumEven; } // Driver code int main() { int n = 457892; getSum(n); return 0; }
Java
// Java implementation of the above approach class GFG{ // Function to find the sum of the odd // and even positioned digits in a number static void getSum(int n) { // If n is odd then the last digit // will be odd positioned boolean isOdd = (n % 2 == 1) ? true : false; // To store the respective sums int sumOdd = 0, sumEven = 0; // While there are digits left process while (n != 0) { // If current digit is odd positioned if (isOdd) sumOdd += n % 10; // Even positioned digit else sumEven += n % 10; // Invert state isOdd = !isOdd; // Remove last digit n /= 10; } System.out.println("Sum odd = " + sumOdd); System.out.println("Sum even = " + sumEven); } // Driver code public static void main(String[] args) { int n = 457892; getSum(n); } } // This code is contributed by jrishabh99
Python3
# Python3 implementation of the approach # Function to find the sum of the odd # and even positioned digits in a number def getSum(n): # If n is odd then the last digit # will be odd positioned if (n % 2 == 1) : isOdd = True else: isOdd = False # To store the respective sums sumOdd = 0 sumEven = 0 # While there are digits left process while (n != 0) : # If current digit is odd positioned if (isOdd): sumOdd += n % 10 # Even positioned digit else: sumEven += n % 10 # Invert state isOdd = not isOdd # Remove last digit n //= 10 print( "Sum odd = " , sumOdd ) print("Sum even = " ,sumEven) # Driver code if __name__ =="__main__": n = 457892 getSum(n) # This code is contributed by chitranayal
C#
// C# implementation of the above approach using System; class GFG{ // Function to find the sum of the odd // and even positioned digits in a number static void getSum(int n) { // If n is odd then the last digit // will be odd positioned bool isOdd = (n % 2 == 1) ? true : false; // To store the respective sums int sumOdd = 0, sumEven = 0; // While there are digits left process while (n != 0) { // If current digit is odd positioned if (isOdd) sumOdd += n % 10; // Even positioned digit else sumEven += n % 10; // Invert state isOdd = !isOdd; // Remove last digit n /= 10; } Console.WriteLine("Sum odd = " + sumOdd); Console.Write("Sum even = " + sumEven); } // Driver code static public void Main () { int n = 457892; getSum(n); } } // This code is contributed by offbeat
Javascript
<script> // Javascript implementation of the approach // Function to find the sum of the odd // and even positioned digits in a number function getSum(n) { // If n is odd then the last digit // will be odd positioned let isOdd = (n % 2 == 1) ? true : false; // To store the respective sums let sumOdd = 0, sumEven = 0; // While there are digits left process while (n != 0) { // If current digit is odd positioned if (isOdd) sumOdd += n % 10; // Even positioned digit else sumEven += n % 10; // Invert state isOdd = !isOdd; // Remove last digit n = Math.floor(n/10); } document.write("Sum odd = " + sumOdd + "<br>"); document.write("Sum even = " + sumEven); } // Driver code let n = 457892; getSum(n); // This code is contributed by Mayank Tyagi </script>
Sum odd = 20 Sum even = 15
Complejidad temporal: O(n)
Espacio auxiliar: O(1)
Método #3: Usando el método string():
- Convierta el entero en string. Recorra la string y almacene la suma de todos los índices pares en una variable y la suma de todos los índices impares en otra variable.
A continuación se muestra la implementación:
C++
// C++ implementation of the approach #include <bits/stdc++.h> using namespace std; // Function to find the sum of the odd // and even positioned digits in a number void getSum(int n) { // To store the respective sums int sumOdd = 0, sumEven = 0; // Converting integer to string string num = to_string(n); // Traversing the string for(int i = 0; i < num.size(); i++) { if (i % 2 == 0) sumOdd = sumOdd + (int(num[i]) - 48); else sumEven = sumEven + (int(num[i]) - 48); } cout << "Sum odd = " << sumOdd << "\n"; cout << "Sum even = " << sumEven << "\n"; } // Driver code int main() { int n = 457892; getSum(n); return 0; } // This code is contributed by souravmahato348
Java
// Java implementation of the approach import java.util.*; class GFG{ static void getSum(int n) { // To store the respective sum int sumOdd = 0; int sumEven = 0; // Converting integer to String String num = String.valueOf(n); // Traversing the String for(int i = 0; i < num.length(); i++) if (i % 2 == 0) sumOdd = sumOdd + (num.charAt(i) - '0'); else sumEven = sumEven + (num.charAt(i) - '0'); System.out.println("Sum odd = " + sumOdd); System.out.println("Sum even = " + sumEven); } // Driver code public static void main(String[] args) { int n = 457892; getSum(n); } } // Code contributed by swarnalii
Python3
# Python3 implementation of the approach # Function to find the sum of the odd # and even positioned digits in a number def getSum(n): # To store the respective sums sumOdd = 0 sumEven = 0 # Converting integer to string num = str(n) # Traversing the string for i in range(len(num)): if(i % 2 == 0): sumOdd = sumOdd+int(num[i]) else: sumEven = sumEven+int(num[i]) print("Sum odd = ", sumOdd) print("Sum even = ", sumEven) # Driver code if __name__ == "__main__": n = 457892 getSum(n) # This code is contributed by vikkycirus
C#
// C# implementation of the approach using System; class GFG{ static void getSum(int n) { // To store the respective sum int sumOdd = 0; int sumEven = 0; // Converting integer to String String num = n.ToString(); // Traversing the String for(int i = 0; i < num.Length; i++) if (i % 2 == 0) sumOdd = sumOdd + (num[i] - '0'); else sumEven = sumEven + (num[i] - '0'); Console.WriteLine("Sum odd = " + sumOdd); Console.WriteLine("Sum even = " + sumEven); } // Driver code public static void Main() { int n = 457892; getSum(n); } } // This code is contributed by subhammahato348
Javascript
<script> // Javascript implementation of the approach function getSum(n) { // To store the respective sum let sumOdd = 0; let sumEven = 0; // Converting integer to String let num = (n).toString(); // Traversing the String for(let i = 0; i < num.length; i++) if (i % 2 == 0) sumOdd = sumOdd + (num[i] - '0'); else sumEven = sumEven + (num[i] - '0'); document.write("Sum odd = " + sumOdd+"<br>"); document.write("Sum even = " + sumEven+"<br>"); } // Driver code let n = 457892; getSum(n); // This code is contributed by unknown2108 </script>
Sum odd = 20 Sum even = 15
Complejidad temporal: O(n)
Espacio auxiliar: O(n)
Publicación traducida automáticamente
Artículo escrito por Vaibhav_Arora y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA