Encuentra todos los ángulos de un triángulo dado

Dadas las coordenadas de los tres vértices del triángulo en el plano 2D, la tarea es encontrar los tres ángulos.
Ejemplo: 
 

Input : A = (0, 0), 
        B = (0, 1), 
        C = (1, 0)
Output : 90, 45, 45

Para resolver este problema usamos a continuación la Ley de los cosenos
 

all angles of a given triangle

c^2 = a^2 + b^2 - 2(a)(b)(cos beta)

Después de reorganizar 
 

beta = acos( ( a^2 + b^2 - c^2 ) / (2ab) )

En trigonometría, la ley de los cosenos (también conocida como fórmula del coseno o regla del coseno) relaciona las longitudes de los lados de un triángulo con el coseno de uno de sus ángulos.
 

First, calculate the length of all the sides. 
Then apply above formula to get all angles in 
radian. Then convert angles from radian into 
degrees.

A continuación se muestra la implementación de los pasos anteriores. 
 

C++

// Code to find all three angles
// of a triangle given coordinate
// of all three vertices
#include <iostream>
#include <utility> // for pair
#include <cmath> // for math functions
using namespace std;
 
#define PI 3.1415926535
 
// returns square of distance b/w two points
int lengthSquare(pair<int,int> X, pair<int,int> Y)
{
    int xDiff = X.first - Y.first;
    int yDiff = X.second - Y.second;
    return xDiff*xDiff + yDiff*yDiff;
}
 
void printAngle(pair<int,int> A, pair<int,int> B,
                pair<int,int> C)
{
    // Square of lengths be a2, b2, c2
    int a2 = lengthSquare(B,C);
    int b2 = lengthSquare(A,C);
    int c2 = lengthSquare(A,B);
 
    // length of sides be a, b, c
    float a = sqrt(a2);
    float b = sqrt(b2);
    float c = sqrt(c2);
 
    // From Cosine law
    float alpha = acos((b2 + c2 - a2)/(2*b*c));
    float beta = acos((a2 + c2 - b2)/(2*a*c));
    float gamma = acos((a2 + b2 - c2)/(2*a*b));
 
    // Converting to degree
    alpha = alpha * 180 / PI;
    beta = beta * 180 / PI;
    gamma = gamma * 180 / PI;
 
    // printing all the angles
    cout << "alpha : " << alpha << endl;
    cout << "beta : " << beta << endl;
    cout << "gamma : " << gamma << endl;
}
 
// Driver code
int main()
{
    pair<int,int> A = make_pair(0,0);
    pair<int,int> B = make_pair(0,1);
    pair<int,int> C = make_pair(1,0);
 
    printAngle(A,B,C);
 
    return 0;
}

Java

// Java Code to find all three angles
// of a triangle given coordinate
// of all three vertices
 
import java.awt.Point;
import static java.lang.Math.PI;
import static java.lang.Math.sqrt;
import static java.lang.Math.acos;
 
class Test
{
    // returns square of distance b/w two points
    static int lengthSquare(Point p1, Point p2)
    {
        int xDiff = p1.x- p2.x;
        int yDiff = p1.y- p2.y;
        return xDiff*xDiff + yDiff*yDiff;
    }
     
    static void printAngle(Point A, Point B,
            Point C)
    {
    // Square of lengths be a2, b2, c2
    int a2 = lengthSquare(B,C);
    int b2 = lengthSquare(A,C);
    int c2 = lengthSquare(A,B);
     
    // length of sides be a, b, c
    float a = (float)sqrt(a2);
    float b = (float)sqrt(b2);
    float c = (float)sqrt(c2);
     
    // From Cosine law
    float alpha = (float) acos((b2 + c2 - a2)/(2*b*c));
    float betta = (float) acos((a2 + c2 - b2)/(2*a*c));
    float gamma = (float) acos((a2 + b2 - c2)/(2*a*b));
     
    // Converting to degree
    alpha = (float) (alpha * 180 / PI);
    betta = (float) (betta * 180 / PI);
    gamma = (float) (gamma * 180 / PI);
     
    // printing all the angles
    System.out.println("alpha : " + alpha);
    System.out.println("betta : " + betta);
    System.out.println("gamma : " + gamma);
    }
     
    // Driver method
    public static void main(String[] args)
    {
        Point A = new Point(0,0);
        Point B = new Point(0,1);
        Point C = new Point(1,0);
      
        printAngle(A,B,C);
    }
}

Python3

# Python3 code to find all three angles
# of a triangle given coordinate
# of all three vertices
import math
 
# returns square of distance b/w two points
def lengthSquare(X, Y):
    xDiff = X[0] - Y[0]
    yDiff = X[1] - Y[1]
    return xDiff * xDiff + yDiff * yDiff
     
def printAngle(A, B, C):
     
    # Square of lengths be a2, b2, c2
    a2 = lengthSquare(B, C)
    b2 = lengthSquare(A, C)
    c2 = lengthSquare(A, B)
 
    # length of sides be a, b, c
    a = math.sqrt(a2);
    b = math.sqrt(b2);
    c = math.sqrt(c2);
 
    # From Cosine law
    alpha = math.acos((b2 + c2 - a2) /
                         (2 * b * c));
    betta = math.acos((a2 + c2 - b2) /
                         (2 * a * c));
    gamma = math.acos((a2 + b2 - c2) /
                         (2 * a * b));
 
    # Converting to degree
    alpha = alpha * 180 / math.pi;
    betta = betta * 180 / math.pi;
    gamma = gamma * 180 / math.pi;
 
    # printing all the angles
    print("alpha : %f" %(alpha))
    print("betta : %f" %(betta))
    print("gamma : %f" %(gamma))
         
# Driver code
A = (0, 0)
B = (0, 1)
C = (1, 0)
 
printAngle(A, B, C);
 
# This code is contributed
# by ApurvaRaj

C#

// C# Code to find all three angles
// of a triangle given coordinate
// of all three vertices
using System;
     
class GFG
{
    class Point
    {
        public int x, y;
        public Point(int x, int y)
        {
            this.x = x;
            this.y = y;
        }
    }
     
    // returns square of distance b/w two points
    static int lengthSquare(Point p1, Point p2)
    {
        int xDiff = p1.x - p2.x;
        int yDiff = p1.y - p2.y;
        return xDiff * xDiff + yDiff * yDiff;
    }
     
    static void printAngle(Point A, Point B, Point C)
    {
        // Square of lengths be a2, b2, c2
        int a2 = lengthSquare(B, C);
        int b2 = lengthSquare(A, C);
        int c2 = lengthSquare(A, B);
         
        // length of sides be a, b, c
        float a = (float)Math.Sqrt(a2);
        float b = (float)Math.Sqrt(b2);
        float c = (float)Math.Sqrt(c2);
         
        // From Cosine law
        float alpha = (float) Math.Acos((b2 + c2 - a2) /
                                           (2 * b * c));
        float betta = (float) Math.Acos((a2 + c2 - b2) /
                                           (2 * a * c));
        float gamma = (float) Math.Acos((a2 + b2 - c2) /
                                           (2 * a * b));
         
        // Converting to degree
        alpha = (float) (alpha * 180 / Math.PI);
        betta = (float) (betta * 180 / Math.PI);
        gamma = (float) (gamma * 180 / Math.PI);
         
        // printing all the angles
        Console.WriteLine("alpha : " + alpha);
        Console.WriteLine("betta : " + betta);
        Console.WriteLine("gamma : " + gamma);
    }
     
    // Driver Code
    public static void Main(String[] args)
    {
        Point A = new Point(0, 0);
        Point B = new Point(0, 1);
        Point C = new Point(1, 0);
     
        printAngle(A, B, C);
    }
}
 
// This code is contributed by Rajput-Ji

Javascript

// JavaScript program
// Code to find all three angles
// of a triangle given coordinate
// of all three vertices
 
// returns square of distance b/w two points
function lengthSquare(X, Y){
    let xDiff = X[0] - Y[0];
    let yDiff = X[1] - Y[1];
    return xDiff*xDiff + yDiff*yDiff;
}
 
function printAngle(A, B, C){
     
    // Square of lengths be a2, b2, c2
    let a2 = lengthSquare(B,C);
    let b2 = lengthSquare(A,C);
    let c2 = lengthSquare(A,B);
 
    // length of sides be a, b, c
    let a = Math.sqrt(a2);
    let b = Math.sqrt(b2);
    let c = Math.sqrt(c2);
 
    // From Cosine law
    let alpha = Math.acos((b2 + c2 - a2)/(2*b*c));
    let beta = Math.acos((a2 + c2 - b2)/(2*a*c));
    let gamma = Math.acos((a2 + b2 - c2)/(2*a*b));
 
    // Converting to degree
    alpha = alpha * 180 / Math.PI;
    beta = beta * 180 / Math.PI;
    gamma = gamma * 180 / Math.PI;
 
    // printing all the angles
    console.log("alpha : ", alpha);
    console.log("beta : ", beta);
    console.log("gamma : ", gamma);
}
 
// Driver code
let A = [0, 0];
let B = [0, 1];
let C = [1, 0];
 
printAngle(A,B,C);
 
// The code is contributed by Gautam goel (guatamgoel962)

Producción: 
 

alpha : 90
beta : 45
gamma : 45

Complejidad de tiempo: O(log(n)) desde el uso de funciones sqrt incorporadas

Espacio Auxiliar: O(1)

Referencia
https://en.wikipedia.org/wiki/Law_of_cosines
Este artículo es una contribución de Pratik Chhajer . Si te gusta GeeksforGeeks y te gustaría contribuir, también puedes escribir un artículo usando write.geeksforgeeks.org o enviar tu artículo por correo a review-team@geeksforgeeks.org. Vea su artículo que aparece en la página principal de GeeksforGeeks y ayude a otros Geeks.
Escriba comentarios si encuentra algo incorrecto o si desea compartir más información sobre el tema tratado anteriormente.
 

Publicación traducida automáticamente

Artículo escrito por GeeksforGeeks-1 y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *