Encuentre el número mínimo de movimientos necesarios para pasar de una celda de la array a otra

Dada una array NXN (M) rellena con 1 , 0 , 2 , 3 . Encuentre el número mínimo de movimientos necesarios para pasar del origen al destino (sumidero) . mientras atraviesa celdas en blanco solamente. Puede desplazarse hacia arriba, abajo, derecha e izquierda. 
Un valor de la celda 1 significa Fuente. 
Un valor de la celda 2 significa Destino. 
Un valor de celda 3 significa celda en blanco. 
Un valor de celda 0 significa Muro en blanco. 

Nota : solo hay una fuente única y un destino único. Puede haber más de una ruta desde la fuente hasta el destino (sumidero). Cada movimiento en la array lo consideramos como ‘1’ 

Ejemplos: 

Input : M[3][3] = {{ 0 , 3 , 2 },
                   { 3 , 3 , 0 },
                   { 1 , 3 , 0 }};
Output : 4 

Input : M[4][4] = {{ 3 , 3 , 1 , 0 },
                   { 3 , 0 , 3 , 3 },
                   { 2 , 3 , 0 , 3 },
                   { 0 , 3 , 3 , 3 }};
Output : 4

Preguntado en: Entrevista de Adobe 
.

minimum_move

La idea es usar un gráfico de nivel (Breadth First Traversal). Considere cada celda como un Node y cada límite entre dos celdas adyacentes como un borde. por lo que el número total de Nodes es N*N.  

  1. Cree un gráfico vacío que tenga un Node N*N (vértice).
  2. Inserte todos los Nodes en un gráfico.
  3. Anota los vértices fuente y sumidero.
  4. Ahora aplique el concepto de gráfico de nivel (que logramos usando BFS). En el que encontramos el nivel de cada Node desde el vértice de origen. Después de eso, devolvemos ‘Level[d]’ (d es el destino). (que es el movimiento mínimo desde la fuente hasta el sumidero)

A continuación se muestra la implementación de la idea anterior.  

C++

// C++ program to find the minimum numbers
// of moves needed to move from source to
// destination .
#include<bits/stdc++.h>
using namespace std;
#define N 4
 
class Graph
{
    int V ;
    list < int > *adj;
public :
    Graph( int V )
    {
        this->V = V ;
        adj = new list<int>[V];
    }
    void addEdge( int s , int d ) ;
    int BFS ( int s , int d) ;
};
 
// add edge to graph
void Graph :: addEdge ( int s , int d )
{
    adj[s].push_back(d);
    adj[d].push_back(s);
}
 
// Level  BFS function to find minimum path
// from source to sink
int Graph :: BFS(int s, int d)
{
    // Base case
    if (s == d)
        return 0;
 
    // make initial distance of all vertex -1
    // from source
    int *level = new int[V];
    for (int i = 0; i < V; i++)
        level[i] = -1  ;
 
    // Create a queue for BFS
    list<int> queue;
 
    // Mark the source node level[s] = '0'
    level[s] = 0 ;
    queue.push_back(s);
 
    // it will be used to get all adjacent
    // vertices of a vertex
    list<int>::iterator i;
 
    while (!queue.empty())
    {
        // Dequeue a vertex from queue
        s = queue.front();
        queue.pop_front();
 
        // Get all adjacent vertices of the
        // dequeued vertex s. If a adjacent has
        // not been visited ( level[i] < '0') ,
        // then update level[i] == parent_level[s] + 1
        // and enqueue it
        for (i = adj[s].begin(); i != adj[s].end(); ++i)
        {
            // Else, continue to do BFS
            if (level[*i] < 0 || level[*i] > level[s] + 1 )
            {
                level[*i] = level[s] + 1 ;
                queue.push_back(*i);
            }
        }
 
    }
 
    // return minimum moves from source to sink
    return level[d] ;
}
 
bool isSafe(int i, int j, int M[][N])
{
    if ((i < 0 || i >= N) ||
            (j < 0 || j >= N ) || M[i][j] == 0)
        return false;
    return true;
}
 
// Returns minimum numbers of  moves  from a source (a
// cell with value 1) to a destination (a cell with
// value 2)
int MinimumPath(int M[][N])
{
    int s , d ; // source and destination
    int V = N*N+2;
    Graph g(V);
 
    // create graph with n*n node
    // each cell consider as node
    int k = 1 ; // Number of current vertex
    for (int i =0 ; i < N ; i++)
    {
        for (int j = 0 ; j < N; j++)
        {
            if (M[i][j] != 0)
            {
                // connect all 4 adjacent cell to
                // current cell
                if ( isSafe ( i , j+1 , M ) )
                    g.addEdge ( k , k+1 );
                if ( isSafe ( i , j-1 , M ) )
                    g.addEdge ( k , k-1 );
                if (j< N-1 && isSafe ( i+1 , j , M ) )
                    g.addEdge ( k , k+N );
                if ( i > 0 && isSafe ( i-1 , j , M ) )
                    g.addEdge ( k , k-N );
            }
 
            // source index
            if( M[i][j] == 1 )
                s = k ;
 
            // destination index
            if (M[i][j] == 2)
                d = k;
            k++;
        }
    }
 
    // find minimum moves
    return g.BFS (s, d) ;
}
 
// driver program to check above function
int main()
{
    int M[N][N] = {{ 3 , 3 , 1 , 0 },
        { 3 , 0 , 3 , 3 },
        { 2 , 3 , 0 , 3 },
        { 0 , 3 , 3 , 3 }
    };
 
    cout << MinimumPath(M) << endl;
 
    return 0;
}

Python3

# Python3 program to find the minimum numbers
# of moves needed to move from source to
# destination .
 
class Graph:
    def __init__(self, V):
        self.V = V
        self.adj = [[] for i in range(V)]
 
    # add edge to graph
    def addEdge (self, s , d ):
        self.adj[s].append(d)
        self.adj[d].append(s)
     
    # Level BFS function to find minimum
    # path from source to sink
    def BFS(self, s, d):
         
        # Base case
        if (s == d):
            return 0
     
        # make initial distance of all
        # vertex -1 from source
        level = [-1] * self.V
     
        # Create a queue for BFS
        queue = []
     
        # Mark the source node level[s] = '0'
        level[s] = 0
        queue.append(s)
     
        # it will be used to get all adjacent
        # vertices of a vertex
     
        while (len(queue) != 0):
             
            # Dequeue a vertex from queue
            s = queue.pop()
     
            # Get all adjacent vertices of the
            # dequeued vertex s. If a adjacent has
            # not been visited ( level[i] < '0') ,
            # then update level[i] == parent_level[s] + 1
            # and enqueue it
            i = 0
            while i < len(self.adj[s]):
                 
                # Else, continue to do BFS
                if (level[self.adj[s][i]] < 0 or
                    level[self.adj[s][i]] > level[s] + 1 ):
                    level[self.adj[s][i]] = level[s] + 1
                    queue.append(self.adj[s][i])
                i += 1
     
        # return minimum moves from source
        # to sink
        return level[d]
 
def isSafe(i, j, M):
    global N
    if ((i < 0 or i >= N) or
        (j < 0 or j >= N ) or M[i][j] == 0):
        return False
    return True
 
# Returns minimum numbers of moves from a
# source (a cell with value 1) to a destination
# (a cell with value 2)
def MinimumPath(M):
    global N
    s , d = None, None # source and destination
    V = N * N + 2
    g = Graph(V)
 
    # create graph with n*n node
    # each cell consider as node
    k = 1 # Number of current vertex
    for i in range(N):
        for j in range(N):
            if (M[i][j] != 0):
                 
                # connect all 4 adjacent cell to
                # current cell
                if (isSafe (i , j + 1 , M)):
                    g.addEdge (k , k + 1)
                if (isSafe (i , j - 1 , M)):
                    g.addEdge (k , k - 1)
                if (j < N - 1 and isSafe (i + 1 , j , M)):
                    g.addEdge (k , k + N)
                if (i > 0 and isSafe (i - 1 , j , M)):
                    g.addEdge (k , k - N)
 
            # source index
            if(M[i][j] == 1):
                s = k
 
            # destination index
            if (M[i][j] == 2):
                d = k
            k += 1
 
    # find minimum moves
    return g.BFS (s, d)
 
# Driver Code
N = 4
M = [[3 , 3 , 1 , 0 ], [3 , 0 , 3 , 3 ],
     [2 , 3 , 0 , 3 ], [0 , 3 , 3 , 3]]
 
print(MinimumPath(M))
 
# This code is contributed by PranchalK

C#

// C# program to find the minimum numbers
// of moves needed to move from source to
// destination .
 
using System;
using System.Collections.Generic;
 
public class Graph {
  private int V;
  private List<int>[] adj;
 
  // Constructor
  public Graph(int v)
  {
    V = v;
    adj = new List<int>[ v ];
    for (int i = 0; i < v; i++)
      adj[i] = new List<int>();
  }
 
  // add edge to graph
  public void AddEdge(int s, int d)
  {
    adj[s].Add(d);
    adj[d].Add(s);
  }
 
  // Level BFS function to find minimum path
  // from source to sink
  public int BFS(int s, int d)
  {
    // Base case
    if (s == d)
      return 0;
 
    // make initial distance of all vertex -1
    // from source
    int[] level = new int[V];
    for (int i = 0; i < V; i++)
      level[i] = -1;
 
    // Create a queue for BFS
    Queue<int> queue = new Queue<int>();
 
    // Mark the source node level[s] = '0'
    level[s] = 0;
    queue.Enqueue(s);
 
    while (queue.Count > 0) {
      // Dequeue a vertex from queue
      s = queue.Dequeue();
 
      // Get all adjacent vertices of the
      // dequeued vertex s. If a adjacent has
      // not been visited ( level[i] < '0') ,
      // then update level[i] == parent_level[s] + 1
      // and enqueue it
      foreach(int i in adj[s])
      {
        // Else, continue to do BFS
        if (level[i] < 0
            || level[i] > level[s] + 1) {
          level[i] = level[s] + 1;
          queue.Enqueue(i);
        }
      }
    }
 
    // return minimum moves from source to sink
    return level[d];
  }
}
 
public class GFG {
  static readonly int N = 4;
 
  static bool IsSafe(int i, int j, int[, ] M)
  {
    if ((i < 0 || i >= N) || (j < 0 || j >= N)
        || M[i, j] == 0)
      return false;
    return true;
  }
 
  // Returns minimum numbers of moves from a source (a
  // cell with value 1) to a destination (a cell with
  // value 2)
  static int MinimumPath(int[, ] M)
  {
    int s = 0, d = 0; // source and destination
    int V = N * N + 2;
    Graph g = new Graph(V);
 
    // create graph with n*n node
    // each cell consider as node
    int k = 1; // Number of current vertex
    for (int i = 0; i < N; i++) {
      for (int j = 0; j < N; j++) {
        if (M[i, j] != 0) {
          // connect all 4 adjacent cell to
          // current cell
          if (IsSafe(i, j + 1, M))
            g.AddEdge(k, k + 1);
          if (IsSafe(i, j - 1, M))
            g.AddEdge(k, k - 1);
          if (j < N - 1 && IsSafe(i + 1, j, M))
            g.AddEdge(k, k + N);
          if (i > 0 && IsSafe(i - 1, j, M))
            g.AddEdge(k, k - N);
        }
 
        // source index
        if (M[i, j] == 1)
          s = k;
 
        // destination index
        if (M[i, j] == 2)
          d = k;
        k++;
      }
    }
 
    // find minimum moves
    return g.BFS(s, d);
  }
 
  // driver program to check above function
  static void Main(string[] args)
  {
    int[, ] M = { { 3, 3, 1, 0 },
                 { 3, 0, 3, 3 },
                 { 2, 3, 0, 3 },
                 { 0, 3, 3, 3 } };
 
    int ans = MinimumPath(M);
    Console.WriteLine(ans);
  }
}
 
// This code is contributed by cavi4762.

Javascript

<script>
 
// JavaScript program to find the minimum numbers
// of moves needed to move from source to
// destination .
 
class Graph{
    constructor(V){
        this.V = V
        this.adj = new Array(V).fill(0).map(()=>[])
    }
 
    // add edge to graph
    addEdge (s , d){
        this.adj[s].push(d)
        this.adj[d].push(s)
    }
     
    // Level BFS function to find minimum
    // path from source to sink
    BFS(s, d){
         
        // Base case
        if (s == d)
            return 0
     
        // make initial distance of all
        // vertex -1 from source
        let level = new Array(this.V).fill(-1);
     
        // Create a queue for BFS
        let queue = []
     
        // Mark the source node level[s] = '0'
        level[s] = 0
        queue.push(s)
     
        // it will be used to get all adjacent
        // vertices of a vertex
     
        while (queue.length != 0){
             
            // Dequeue a vertex from queue
            s = queue.shift()
     
            // Get all adjacent vertices of the
            // dequeued vertex s. If a adjacent has
            // not been visited ( level[i] < '0') ,
            // then update level[i] == parent_level[s] + 1
            // and enqueue it
            let i = 0
            while(i < this.adj[s].length){
                 
                // Else, continue to do BFS
                if (level[this.adj[s][i]] < 0 ||
                    level[this.adj[s][i]] > level[s] + 1 ){
                    level[this.adj[s][i]] = level[s] + 1
                    queue.push(this.adj[s][i])
                }
                i += 1
            }
        }
        // return minimum moves from source
        // to sink
        return level[d]
      }
  }
 
function isSafe(i, j, M){
     
    if ((i < 0 || i >= N) ||
        (j < 0 || j >= N ) || M[i][j] == 0)
        return false
    return true
}
 
// Returns minimum numbers of moves from a
// source (a cell with value 1) to a destination
// (a cell with value 2)
function MinimumPath(M){
 
    let s = null, d = null // source and destination
    let V = N * N + 2
    let g = new Graph(V)
 
    // create graph with n*n node
    // each cell consider as node
    let k = 1 // Number of current vertex
    for(let i=0;i<N;i++){
        for(let j=0;j<N;j++){
            if (M[i][j] != 0){
                 
                // connect all 4 adjacent cell to
                // current cell
                if (isSafe (i , j + 1 , M))
                    g.addEdge (k , k + 1)
                if (isSafe (i , j - 1 , M))
                    g.addEdge (k , k - 1)
                if (j < N - 1 && isSafe (i + 1 , j , M))
                    g.addEdge (k , k + N)
                if (i > 0 && isSafe (i - 1 , j , M))
                    g.addEdge (k , k - N)
            }
            // source index
            if(M[i][j] == 1)
                s = k
 
            // destination index
            if (M[i][j] == 2)
                d = k
            k += 1
          }
        }
 
    // find minimum moves
    return g.BFS (s, d)
}
 
// Driver Code
let N = 4
let M = [[3 , 3 , 1 , 0 ], [3 , 0 , 3 , 3 ],
     [2 , 3 , 0 , 3 ], [0 , 3 , 3 , 3]]
 
document.write(MinimumPath(M))
 
// This code is contributed by shinjanpatra
 
</script>
Producción

4

Otro Enfoque: (DFS Implementación del problema)

Lo mismo se puede implementar usando DFS donde se compara la ruta completa desde el origen para obtener los movimientos mínimos hacia el destino

Enfoque :

  1. Recorra cada elemento en la array de entrada y cree un gráfico a partir de esa array
    1. Crea un gráfico con N*N vértices.
    2. Agregue la arista del vértice k a k+1 / k-1 (si la arista está en el elemento izquierdo o derecho en la array) o k a k+N/ kN (si la arista está en el elemento superior o inferior en la array).
    3. Compruebe siempre si el elemento existe en la array y el elemento != 0.
    4. if(elemento == 1) mapea el origen if (elemento == 2) mapea el destino.
  2. Realice DFS al gráfico formado, desde el origen hasta el destino.
    1. Condición base: si origen==destino devuelve 0 como el número mínimo de movimientos.
    2. Los movimientos mínimos serán el mínimo (el resultado del DFS realizado en los vértices adyacentes no visitados).

A continuación se muestra la implementación del enfoque anterior: 

C++

// C++ program for the above approach
#include <bits/stdc++.h>
#define N 4
 
// To be used in DFS while comparing the
// minimum element
#define MAX (INT_MAX - 1)
using namespace std;
 
// Graph with the adjacency
// list representationo
class Graph {
private:
    int V;
    vector<int>* adj;
 
public:
    Graph(int V)
        : V{ V }
    {
         
        // Initializing the
        // adjacency list
        adj = new vector<int>[V];
    }
   
    // Clearing the memory after
    // its use (best practice)
    ~Graph()
    {
        delete[] adj;
    }
 
    // Adding the element to the
    // adjacency list matrix
    // representation
    void add_edges(int u, int v)
    {
      adj[u].push_back(v);
    }
 
    // performing the DFS for the minimum moves
    int DFS(int s, int d, unordered_set<int>& visited)
    {
         
        // Base condition for the recursion
        if (s == d)
            return 0;
       
        // Initializing the result
        int res{ MAX };
        visited.insert(s);
        for (int item : adj[s])
            if (visited.find(item) ==
                         visited.end())
               
                // comparing the res with
                // the result of DFS
                // to get the minimum moves
                res = min(res, 1 + DFS(item, d, visited));
        return res;
    }
};
 
// ruling out the cases where the element
// to be inserted is outside the matrix
bool is_safe(int arr[][4], int i, int j)
{
    if ((i < 0 || i >= N) || (j < 0 || j >= N)
        || arr[i][j] == 0)
        return false;
    return true;
}
 
int min_moves(int arr[][N])
{
    int s{ -1 }, d{ -1 }, V{ N * N };
   
    /* k be the variable which represents the
       positions( 0 - N*N ) inside the graph.
    */
   
     // k moves from top-left to bottom-right
    int k{ 0 };
    Graph g{ V };
    for (int i = 0; i < N; i++)
    {
        for (int j = 0; j < N; j++) {
           
            // Adding the edge
            if (arr[i][j] != 0) {
                if (is_safe(arr, i, j + 1))
                    g.add_edges(k, k + 1); // left
                if (is_safe(arr, i, j - 1))
                    g.add_edges(k, k - 1); // right
                if (is_safe(arr, i + 1, j))
                    g.add_edges(k, k + N); // bottom
                if (is_safe(arr, i - 1, j))
                    g.add_edges(k, k - N); // top
            }
           
            // Source from which DFS to be
            // performed
            if (arr[i][j] == 1)
                s = k;
           
            // Destination
            else if (arr[i][j] == 2)
                d = k;
           
            // Moving k from top-left
            // to bottom-right
            k++;
        }
    }
    unordered_set<int> visited;
   
    // DFS performed from
    // source to destination
    return g.DFS(s, d, visited);
}
 
int32_t main()
{
    int arr[][N] = { { 3, 3, 1, 0 },
                     { 3, 0, 3, 3 },
                     { 2, 3, 0, 3 },
                     { 0, 3, 3, 3 } };
   
    // if(min_moves(arr) == MAX) there
    // doesn't exist a path
    // from source to destination
    cout << min_moves(arr) << endl;
    return 0;
   
    // the DFS approach and code
    // is contributed by Lisho
    // Thomas
}

Python3

# Python3 program for the above approach
 
# To be used in DFS while comparing the
# minimum element
# define MAX (I4T_MAX - 1)
visited = {}
adj = [[] for i in range(16)]
 
# Performing the DFS for the minimum moves
def add_edges(u, v):
     
    global adj
    adj[u].append(v)
 
def DFS(s, d):
     
    global visited
 
    # Base condition for the recursion
    if (s == d):
        return 0
 
    # Initializing the result
    res = 10**9
    visited[s] = 1
     
    for item in adj[s]:
        if (item not in visited):
             
            # Comparing the res with
            # the result of DFS
            # to get the minimum moves
            res = min(res, 1 + DFS(item, d))
 
    return res
 
# Ruling out the cases where the element
# to be inserted is outside the matrix
def is_safe(arr, i, j):
     
    if ((i < 0 or i >= 4) or
        (j < 0 or j >= 4) or arr[i][j] == 0):
        return False
         
    return True
 
def min_moves(arr):
 
    s, d, V = -1,-1, 16
    # k be the variable which represents the
    # positions( 0 - 4*4 ) inside the graph.
     
    # k moves from top-left to bottom-right
    k = 0
    for i in range(4):
        for j in range(4):
             
            # Adding the edge
            if (arr[i][j] != 0):
                if (is_safe(arr, i, j + 1)):
                    add_edges(k, k + 1) # left
                if (is_safe(arr, i, j - 1)):
                    add_edges(k, k - 1) # right
                if (is_safe(arr, i + 1, j)):
                    add_edges(k, k + 4) # bottom
                if (is_safe(arr, i - 1, j)):
                    add_edges(k, k - 4) # top
 
            # Source from which DFS to be
            # performed
            if (arr[i][j] == 1):
                s = k
                 
            # Destination
            elif (arr[i][j] == 2):
                d = k
                 
            # Moving k from top-left
            # to bottom-right
            k += 1
 
    # DFS performed from
    # source to destination
    return DFS(s, d)
 
# Driver code
if __name__ == '__main__':
     
    arr = [ [ 3, 3, 1, 0 ],
            [ 3, 0, 3, 3 ],
            [ 2, 3, 0, 3 ],
            [ 0, 3, 3, 3 ] ]
 
    # If(min_moves(arr) == MAX) there
    # doesn't exist a path
    # from source to destination
    print(min_moves(arr))
 
# This code is contributed by mohit kumar 29

C#

// C# program for the above approach
 
using System;
using System.Collections.Generic;
 
// Graph with the adjacency
// list representation
public class Graph {
    private List<int>[] adj;
 
    public Graph(int v)
    {
        // Initializing the
        // adjacency list
        adj = new List<int>[ v ];
        for (int i = 0; i < v; i++)
            adj[i] = new List<int>();
    }
 
    // Adding the element to the
    // adjacency list matrix
    // representation
    public void Add_edges(int u, int v) { adj[u].Add(v); }
 
    // performing the DFS for the minimum moves
    public int DFS(int s, int d, HashSet<int> visited)
    {
 
        // Base condition for the recursion
        if (s == d)
            return 0;
 
        // Initializing the result
        int res = Int32.MaxValue - 1;
        visited.Add(s);
        foreach(int item in adj[s])
        {
            if (!visited.Contains(item)) {
                // comparing the res with
                // the result of DFS
                // to get the minimum moves
                res = Math.Min(res,
                               1 + DFS(item, d, visited));
            }
        }
        return res;
    }
}
 
public class GFG
 
{
    static readonly int N = 4;
 
    // ruling out the cases where the element
    // to be inserted is outside the matrix
    static bool Is_safe(int[, ] arr, int i, int j)
    {
        if ((i < 0 || i >= N) || (j < 0 || j >= N)
            || arr[i, j] == 0)
            return false;
        return true;
    }
 
    static int Min_moves(int[, ] arr)
    {
        int s = -1, d = -1, V = N * N;
 
        /* k be the variable which represents the
        positions( 0 - N*N ) inside the graph.
        */
 
        // k moves from top-left to bottom-right
        int k = 0;
        Graph g = new Graph(V);
        for (int i = 0; i < N; i++) {
            for (int j = 0; j < N; j++) {
 
                // Adding the edge
                if (arr[i, j] != 0) {
                    if (Is_safe(arr, i, j + 1))
                        g.Add_edges(k, k + 1); // left
                    if (Is_safe(arr, i, j - 1))
                        g.Add_edges(k, k - 1); // right
                    if (Is_safe(arr, i + 1, j))
                        g.Add_edges(k, k + N); // bottom
                    if (Is_safe(arr, i - 1, j))
                        g.Add_edges(k, k - N); // top
                }
 
                // Source from which DFS to be
                // performed
                if (arr[i, j] == 1)
                    s = k;
 
                // Destination
                else if (arr[i, j] == 2)
                    d = k;
 
                // Moving k from top-left
                // to bottom-right
                k++;
            }
        }
        HashSet<int> visited = new HashSet<int>();
 
        // DFS performed from
        // source to destination
        return g.DFS(s, d, visited);
    }
 
    static void Main(string[] args)
    {
        int[, ] arr = { { 3, 3, 1, 0 },
                        { 3, 0, 3, 3 },
                        { 2, 3, 0, 3 },
                        { 0, 3, 3, 3 } };
 
        int ans = Min_moves(arr);
        Console.WriteLine(ans);
    }
}
Producción

4

Este artículo es una contribución de Nishant Singh . Si te gusta GeeksforGeeks y te gustaría contribuir, también puedes escribir un artículo usando write.geeksforgeeks.org o enviar tu artículo por correo a review-team@geeksforgeeks.org. Vea su artículo que aparece en la página principal de GeeksforGeeks y ayude a otros Geeks.

Publicación traducida automáticamente

Artículo escrito por GeeksforGeeks-1 y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *