Dada una array arr[][] que contiene los bordes de un gráfico que se usará para construir un gráfico no dirigido G con N Nodes, la tarea es encontrar el tamaño máximo del componente en el gráfico después de agregar cada borde mientras se construye el gráfico.
Ejemplos:
Entrada: N = 4, arr[][] = {{1, 2}, {3, 4}, {2, 3}}
Salida: 2 2 4
Explicación:
Inicialmente, el gráfico tiene 4 Nodes individuales 1, 2, 3 y 4.
Después de agregar el primer borde: 1 – 2, 3, 4 -> tamaño máximo del componente = 2
Después de agregar el segundo borde: 1 – 2, 3 – 4 -> tamaño máximo del componente = 2
Después del tercer borde se agrega: 1 – 2 – 3 – 4 -> tamaño máximo del componente = 4Entrada: N = 4, arr[][] = {{2, 3}, {1, 2}, {1, 5}, {2, 4}}
Salida: 2 3 4 5
Enfoque ingenuo: el enfoque ingenuo para este problema es agregar los bordes secuencialmente y, en cada paso, aplicar el algoritmo de búsqueda primero en profundidad para encontrar el tamaño del componente más grande.
A continuación se muestra la implementación del enfoque anterior:
C++
// C++ program to find the // maximum comake_paironent size // after addition of each // edge to the graph #include <bits/stdc++.h> using namespace std; // Function to perform // Depth First Search // on the given graph int dfs(int u, int visited[], vector<int>* adj) { // Mark visited visited[u] = 1; int size = 1; // Add each child's // comake_paironent size for (auto child : adj[u]) { if (!visited[child]) size += dfs(child, visited, adj); } return size; } // Function to find the maximum // comake_paironent size // after addition of each // edge to the graph void maxSize(vector<pair<int, int> > e, int n) { // Graph in the adjacency // list format vector<int> adj[n]; // Visited array int visited[n]; vector<int> answer; // At each step, add a new // edge and apply dfs on all // the nodes to find the maximum // comake_paironent size for (auto edge : e) { // Add this edge to undirected graph adj[edge.first - 1].push_back( edge.second - 1); adj[edge.second - 1].push_back( edge.first - 1); // Mark all the nodes // as unvisited memset(visited, 0, sizeof(visited)); int maxAns = 0; // Loop to perform DFS // and find the size // of the maximum comake_paironent for (int i = 0; i < n; i++) { if (!visited[i]) { maxAns = max(maxAns, dfs(i, visited, adj)); } } answer.push_back(maxAns); } // Print the answer for (auto i : answer) { cout << i << " "; } } // Driver code int main() { int N = 4; vector<pair<int, int> > E; E.push_back(make_pair(1, 2)); E.push_back(make_pair(3, 4)); E.push_back(make_pair(2, 3)); maxSize(E, N); return 0; }
Java
// Java program to find the maximum // comake_paironent size after // addition of each edge to the graph import java.util.*; @SuppressWarnings("unchecked") class GFG{ static class pair { int Key, Value; pair(int Key, int Value) { this.Key = Key; this.Value = Value; } } // Function to perform Depth First // Search on the given graph static int dfs(int u, int []visited, ArrayList []adj) { // Mark visited visited[u] = 1; int size = 1; // Add each child's // comake_paironent size for(int child : (ArrayList<Integer>)adj[u]) { if (visited[child] == 0) size += dfs(child, visited, adj); } return size; } // Function to find the maximum // comake_paironent size after // addition of each edge to the graph static void maxSize(ArrayList e, int n) { // Graph in the adjacency // list format ArrayList []adj = new ArrayList[n]; for(int i = 0; i < n; i++) { adj[i] = new ArrayList(); } // Visited array int []visited = new int[n]; ArrayList answer = new ArrayList(); // At each step, add a new // edge and apply dfs on all // the nodes to find the maximum // comake_paironent size for(pair edge : (ArrayList<pair>)e) { // Add this edge to undirected graph adj[edge.Key - 1].add( edge.Value - 1); adj[edge.Value - 1].add( edge.Key - 1); // Mark all the nodes // as unvisited Arrays.fill(visited,0); int maxAns = 0; // Loop to perform DFS and find the // size of the maximum comake_paironent for(int i = 0; i < n; i++) { if (visited[i] == 0) { maxAns = Math.max(maxAns, dfs(i, visited, adj)); } } answer.add(maxAns); } // Print the answer for(int i : (ArrayList<Integer>) answer) { System.out.print(i + " "); } } // Driver code public static void main(String[] args) { int N = 4; ArrayList E = new ArrayList(); E.add(new pair(1, 2)); E.add(new pair(3, 4)); E.add(new pair(2, 3)); maxSize(E, N); } } // This code is contributed by pratham76
Python3
# Python3 program to find the # maximum comake_paironent size # after addition of each # edge to the graph # Function to perform # Depth First Search # on the given graph def dfs(u, visited, adj): # Mark visited visited[u] = 1 size = 1 # Add each child's # comake_paironent size for child in adj[u]: if (visited[child] == 0): size += dfs(child, visited, adj) return size # Function to find the maximum # comake_paironent size # after addition of each # edge to the graph def maxSize(e, n): # Graph in the adjacency # list format adj = [] for i in range(n): adj.append([]) # Visited array visited = [0]*(n) answer = [] # At each step, add a new # edge and apply dfs on all # the nodes to find the maximum # comake_paironent size for edge in e: # Add this edge to undirected graph adj[edge[0] - 1].append(edge[1] - 1) adj[edge[1] - 1].append(edge[0] - 1) # Mark all the nodes # as unvisited visited = [0]*(n) maxAns = 0 # Loop to perform DFS # and find the size # of the maximum comake_paironent for i in range(n): if (visited[i] == 0): maxAns = max(maxAns, dfs(i, visited, adj)) answer.append(maxAns) # Print the answer for i in answer: print(i, "", end = "") N = 4 E = [] E.append([1, 2]) E.append([3, 4]) E.append([2, 3]) maxSize(E, N) # This code is contributed by divyesh072019.
C#
// C# program to find the // maximum comake_paironent size // after addition of each // edge to the graph using System; using System.Collections; using System.Collections.Generic; class GFG{ // Function to perform // Depth First Search // on the given graph static int dfs(int u, int []visited, ArrayList []adj) { // Mark visited visited[u] = 1; int size = 1; // Add each child's // comake_paironent size foreach (int child in adj[u]) { if (visited[child] == 0) size += dfs(child, visited, adj); } return size; } // Function to find the maximum // comake_paironent size // after addition of each // edge to the graph static void maxSize(ArrayList e, int n) { // Graph in the adjacency // list format ArrayList []adj = new ArrayList[n]; for(int i = 0; i < n; i++) { adj[i] = new ArrayList(); } // Visited array int []visited = new int[n]; ArrayList answer = new ArrayList(); // At each step, add a new // edge and apply dfs on all // the nodes to find the maximum // comake_paironent size foreach(KeyValuePair<int, int> edge in e) { // Add this edge to undirected graph adj[edge.Key - 1].Add( edge.Value - 1); adj[edge.Value - 1].Add( edge.Key - 1); // Mark all the nodes // as unvisited Array.Fill(visited,0); int maxAns = 0; // Loop to perform DFS // and find the size // of the maximum comake_paironent for(int i = 0; i < n; i++) { if (visited[i] == 0) { maxAns = Math.Max(maxAns, dfs(i, visited, adj)); } } answer.Add(maxAns); } // Print the answer foreach(int i in answer) { Console.Write(i + " "); } } // Driver code public static void Main(string[] args) { int N = 4; ArrayList E = new ArrayList(); E.Add(new KeyValuePair<int, int>(1, 2)); E.Add(new KeyValuePair<int, int>(3, 4)); E.Add(new KeyValuePair<int, int>(2, 3)); maxSize(E, N); } } // This code is contributed by rutvik_56
Javascript
<script> // Javascript program to find the // maximum comake_paironent size // after addition of each // edge to the graph // Function to perform // Depth First Search // on the given graph function dfs(u, visited, adj) { // Mark visited visited[u] = 1; let size = 1; // Add each child's // comake_paironent size for(let child = 0; child < adj[u].length; child++) { if (visited[adj[u][child]] == 0) { size += dfs(adj[u][child], visited, adj); } } return size; } // Function to find the maximum // comake_paironent size // after addition of each // edge to the graph function maxSize(e, n) { // Graph in the adjacency // list format let adj = []; for(let i = 0; i < n; i++) { adj.push([]); } // Visited array let visited = new Array(n); visited.fill(0); let answer = []; // At each step, add a new // edge and apply dfs on all // the nodes to find the maximum // comake_paironent size for(let edge = 0; edge < e.length; edge++) { // Add this edge to undirected graph adj[e[edge][0] - 1].push(e[edge][1] - 1); adj[e[edge][1] - 1].push(e[edge][0] - 1); // Mark all the nodes // as unvisited visited.fill(0); let maxAns = 0; // Loop to perform DFS // and find the size // of the maximum comake_paironent for(let i = 0; i < n; i++) { if (visited[i] == 0) maxAns = Math.max(maxAns, dfs(i, visited, adj)); } answer.push(maxAns); } // Print the answer for(let i = 0; i < answer.length; i++) { document.write(answer[i] + " "); } } let N = 4; let E = []; E.push([1, 2]); E.push([3, 4]); E.push([2, 3]); maxSize(E, N); // This code is contributed by divyeshrabadiya07. </script>
2 2 4
Complejidad de tiempo: O(|E| * N)
Enfoque eficiente: la idea es utilizar el concepto de conjunto disjunto (unión por rango y compresión de ruta) para resolver el problema de manera más eficiente.
- Cada Node es inicialmente un conjunto disjunto dentro de sí mismo. A medida que se agregan los bordes, los conjuntos disjuntos se fusionan formando componentes más grandes. En la implementación del conjunto disjunto, haremos que el sistema de clasificación se base en los tamaños de los componentes, es decir, cuando se realiza la fusión de dos componentes, la raíz del componente más grande se considerará la raíz final después de la operación de fusión.
- Una forma de encontrar el componente de mayor tamaño después de cada adición de arista es recorrer la array de tamaño (tamaño[i] representa el tamaño del componente al que pertenece el Node ‘i’), pero esto es ineficiente cuando el número de Nodes en el gráfico es alto.
- Una forma más eficiente es almacenar los tamaños de los componentes de toda la raíz en alguna estructura de datos ordenada como conjuntos .
- Cuando se fusionan dos componentes, todo lo que tenemos que hacer es eliminar los tamaños de componentes anteriores del conjunto y agregar el tamaño de componente combinado. Entonces, en cada paso, podríamos encontrar el tamaño de componente más grande en complejidad logarítmica.
A continuación se muestra la implementación del enfoque anterior:
C++
// C++ implementation to find the maximum // component size after the addition of // each edge to the graph #include <bits/stdc++.h> using namespace std; // Variables for implementing DSU int par[100005]; int size[100005]; // Root of the component of node i int root(int i) { if (par[i] == i) return i; // Finding the root and applying // path compression else return par[i] = root(par[i]); } // Function to merge two components void merge(int a, int b) { // Find the roots of both // the components int p = root(a); int q = root(b); // If both the nodes already belong // to the same component if (p == q) return; // Union by rank, the rank in // this case is the size of // the component. // Smaller size will be // merged into larger, // so the larger's root // will be the final root if (size[p] > size[q]) swap(p, q); par[p] = q; size[q] += size[p]; } // Function to find the // maximum component size // after the addition of // each edge to the graph void maxSize(vector<pair<int, int> > e, int n) { // Initialising the disjoint set for (int i = 1; i < n + 1; i++) { // Each node is the root and // each component size is 1 par[i] = i; size[i] = 1; } vector<int> answer; // A multiset is being used to store // the size of the components // because multiple components // can have same sizes multiset<int> compSizes; for (int i = 1; i <= n; i++) compSizes.insert(size[i]); // At each step; add a new edge, // merge the components // and find the max // sized component for (auto edge : e) { // Merge operation is required only when // both the nodes don't belong to the // same component if (root(edge.first) != root(edge.second)) { // Sizes of the components int size1 = size[root(edge.first)]; int size2 = size[root(edge.second)]; // Remove the previous component sizes compSizes.erase(compSizes.find(size1)); compSizes.erase(compSizes.find(size2)); // Perform the merge operation merge(edge.first, edge.second); // Insert the combined size compSizes.insert(size1 + size2); } // Maximum value in the multiset is // the max component size answer.push_back(*compSizes.rbegin()); } // Printing the answer for (int i = 0; i < answer.size(); i++) { cout << answer[i] << " "; } } // Driver code int main() { int N = 4; vector<pair<int, int> > E; E.push_back(make_pair(1, 2)); E.push_back(make_pair(3, 4)); E.push_back(make_pair(2, 3)); maxSize(E, N); return 0; }
Python3
# Python3 implementation to find the maximum # component size after the addition of # each edge to the graph # Variables for implementing DSU par=[-1]*100005 size=[-1]*100005 # Root of the component of node i def root(i): if (par[i] == i): return i # Finding the root and applying # path compression par[i] = root(par[i]) return par[i] # Function to merge two components def merge(a, b): # Find the roots of both # the components p = root(a) q = root(b) # If both the nodes already belong # to the same component if (p == q): return # Union by rank, the rank in # this case is the size of # the component. # Smaller size will be # merged into larger, # so the larger's root # will be the final root if (size[p] > size[q]): p,q=q,p par[p] = q size[q] += size[p] # Function to find the # maximum component size # after the addition of # each edge to the graph def maxSize(e, n): # Initialising the disjoint set for i in range(1, n + 1): # Each node is the root and # each component size is 1 par[i] = i size[i] = 1 answer=[] # A multiset is being used to store # the size of the components # because multiple components # can have same sizes compSizes=dict() for i in range(1,n+1): compSizes[size[i]]=compSizes.get(size[i],0)+1 # At each step add a new edge, # merge the components # and find the max # sized component for edge in e: # Merge operation is required only when # both the nodes don't belong to the # same component if (root(edge[0]) != root(edge[1])) : # Sizes of the components size1 = size[root(edge[0])] size2 = size[root(edge[1])] # Remove the previous component sizes compSizes[size1]-=1 if compSizes[size1]==0: del compSizes[size1] compSizes[size2]-=1 if compSizes[size2]==0: del compSizes[size2] # Perform the merge operation merge(edge[0], edge[1]) # Insert the combined size compSizes[size1 + size2]=compSizes.get(size1 + size2,0)+1 # Maximum value in the multiset is # the max component size answer.append(max(compSizes.keys())) # Printing the answer for i in range(len(answer)) : print(answer[i],end=' ') # Driver code if __name__ == '__main__': N = 4 E=[] E.append((1, 2)) E.append((3, 4)) E.append((2, 3)) maxSize(E, N)
2 2 4
Complejidad de tiempo: O(|E| * log(N))
Espacio auxiliar: O(N)