Encuentre el valor de N XOR’ed a sí mismo K veces

Dados dos enteros N y K , la tarea es encontrar el valor de N XOR N XOR N XOR N … XOR N (K veces) .

Ejemplos:  

Entrada: N = 123, K = 3 
Salida: 123 
(123 ^ 123 ^ 123) = 123
Entrada: N = 123, K = 2 
Salida:
(123 ^ 123) = 0  

Enfoque ingenuo: simplemente ejecute un bucle for y xor N, K veces.

A continuación se muestra la implementación del enfoque anterior: 

C++

// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to return n ^ n ^ ... k times
int xorK(int n, int k)
{
 
    // Find the result
    int res = n;
    for (int i = 1; i < k; i++)
        res = (res ^ n);
    return res;
}
 
// Driver code
int main()
{
    int n = 123, k = 3;
 
    cout << xorK(n, k);
 
    return 0;
}

Java

// Java implementation of the approach
class GFG
{
 
// Function to return n ^ n ^ ... k times
static int xorK(int n, int k)
{
 
    // Find the result
    int res = n;
    for (int i = 1; i < k; i++)
        res = (res ^ n);
    return n;
}
 
// Driver code
public static void main(String[] args)
{
    int n = 123, k = 3;
 
    System.out.print(xorK(n, k));
}
}
 
// This code is contributed by 29AjayKumar

Python3

# Python3 implementation of the approach
 
# Function to return n ^ n ^ ... k times
def xorK(n, k):
 
    # Find the result
    res = n
    for i in range(1, k):
        res = (res ^ n)
    return n
 
# Driver code
n = 123
k = 3
 
print(xorK(n, k))
 
# This code is contributed by Mohit Kumar

C#

// C# implementation of the approach
using System;
 
class GFG
{
     
// Function to return n ^ n ^ ... k times
static int xorK(int n, int k)
{
 
    // Find the result
    int res = n;
    for (int i = 1; i < k; i++)
        res = (res ^ n);
    return n;
}
 
// Driver code
static public void Main ()
{
    int n = 123, k = 3;
     
    Console.Write(xorK(n, k));
}
}
 
// This code is contributed by ajit.

Javascript

<script>
 
// JavaSCript implementation of the approach
 
// Function to return n ^ n ^ ... k times
function xorK(n, k)
{
 
    // Find the result
    let res = n;
    for (let i = 1; i < k; i++)
        res = (res ^ n);
    return n;
}
 
// Driver code
 
    let n = 123, k = 3;
 
    document.write(xorK(n, k));
 
// This code is contributed by Surbhi Tyagi.
 
</script>
Producción: 

123

 

Complejidad de tiempo: O(K) 
Complejidad de espacio: O(1)

Enfoque eficiente: a partir de las propiedades X XOR X = 0 y X ^ 0 = X , se puede observar que cuando K es impar , la respuesta será N , de lo contrario, la respuesta será 0 .
A continuación se muestra la implementación del enfoque anterior: 
 

C++

// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to return n ^ n ^ ... k times
int xorK(int n, int k)
{
 
    // If k is odd the answer is
    // the number itself
    if (k % 2 == 1)
        return n;
 
    // Else the answer is 0
    return 0;
}
 
// Driver code
int main()
{
    int n = 123, k = 3;
 
    cout << xorK(n, k);
 
    return 0;
}

Java

// Java implementation of the approach
class GFG
{
 
// Function to return n ^ n ^ ... k times
static int xorK(int n, int k)
{
 
    // If k is odd the answer is
    // the number itself
    if (k % 2 == 1)
        return n;
 
    // Else the answer is 0
    return 0;
}
 
// Driver code
public static void main(String[] args)
{
    int n = 123, k = 3;
 
    System.out.print(xorK(n, k));
}
}
 
// This code is contributed by PrinciRaj1992

Python3

# Python implementation of the approach
 
# Function to return n ^ n ^ ... k times
def xorK(n, k):
     
    # If k is odd the answer is
    # the number itself
    if (k % 2 == 1):
        return n
 
    # Else the answer is 0
    return 0
 
# Driver code
n = 123
k = 3
 
print(xorK(n, k))
 
# This code is contributed by Sanjit_Prasad

C#

// C# implementation of the approach
using System;
 
class GFG
{
 
// Function to return n ^ n ^ ... k times
static int xorK(int n, int k)
{
 
    // If k is odd the answer is
    // the number itself
    if (k % 2 == 1)
        return n;
 
    // Else the answer is 0
    return 0;
}
 
// Driver code
public static void Main(String[] args)
{
    int n = 123, k = 3;
 
    Console.Write(xorK(n, k));
}
}
 
// This code is contributed by 29AjayKumar

Javascript

<script>
    // Javascript implementation of the approach
     
    // Function to return n ^ n ^ ... k times
    function xorK(n, k)
    {
 
        // If k is odd the answer is
        // the number itself
        if (k % 2 == 1)
            return n;
 
        // Else the answer is 0
        return 0;
    }
     
    let n = 123, k = 3;
  
    document.write(xorK(n, k));
     
</script>
Producción: 

123

 

Complejidad de tiempo: O(1) 
Complejidad de espacio: O(1)
 

Publicación traducida automáticamente

Artículo escrito por prajmsidc y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *