Encuentre números en el rango [L, R] que sean coprimos con elementos de Array dados

Dada una array arr[] que consta de N enteros positivos distintos y un rango [L, R] , la tarea es encontrar el elemento en el rango dado [L, R] que son coprimos con todos los elementos de la array .

Ejemplos:

Entrada: L = 3, R = 11, arr[ ] = {4, 7, 9, 6, 13, 21}
Salida: { 5, 11 }
Explicación:
Los elementos en el rango [3, 5] que son coprimos con todos los elementos de la array son {5, 11}.

Entrada: L = 1, R = 10, arr[ ] = {3, 5}
Salida: {1, 2, 4, 7, 8}

Enfoque: el problema dado se puede resolver almacenando todos los divisores de cada elemento de array en un HashSet . Deje que haya otro HashSet , digamos S que consta de números en el rango [L, R] ahora la tarea es eliminar los múltiplos de los divisores calculados a partir de este HashSet S para obtener los números resultantes. Siga los pasos para resolver el problema:

  • Almacene los divisores de cada elemento de la array en un conjunto desordenado , digamos S.
  • Almacene todos los valores en el rango [L, R] en otro HashSet, digamos M .
  • Atraviese el conjunto desordenado S y, para cada elemento de S , diga value , elimine todos los múltiplos de value del conjunto M si está presente en M.
  • Después de completar los pasos anteriores, imprima todos los elementos almacenados en HashSet M como los números resultantes requeridos.

A continuación se muestra la implementación del enfoque anterior:

C++

// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to find all the elements in
// the range [L, R] which are co prime
// with all array elements
void elementsCoprimeWithArr(
    int A[], int N, int L, int R)
{
    // Store all the divisors of array
    // element in S
    unordered_set<int> S;
 
    // Find the divisors
    for (int i = 0; i < N; i++) {
 
        int curr_ele = A[i];
 
        for (int j = 1;
             j <= sqrt(curr_ele) + 1; j++) {
            if (curr_ele % j == 0) {
                S.insert(j);
                S.insert(curr_ele / j);
            }
        }
    }
 
    // Stores all possible required number
    // satisfying the given criteria
    unordered_set<int> store;
 
    // Insert all element [L, R]
    for (int i = L; i <= R; i++)
        store.insert(i);
 
    S.erase(1);
 
    // Traverse the set
    for (auto it : S) {
 
        int ele = it;
 
        int index = 1;
 
        // Remove the multiples of ele
        while (index * ele <= R) {
            store.erase(index * ele);
            index++;
        }
    }
 
    // Print the resultant numbers
    for (auto i : store) {
        cout << i << " ";
    }
}
 
// Driver Code
int main()
{
    int arr[] = { 3, 5 };
    int L = 1, R = 10;
    int N = sizeof(arr) / sizeof(arr[0]);
 
    elementsCoprimeWithArr(arr, N, L, R);
 
    return 0;
}

Java

// Java program for the above approach
import java.util.*;
 
class GFG
{
 
// Function to find all the elements in
// the range [L, R] which are co prime
// with all array elements
static void elementsCoprimeWithArr(
    int A[], int N, int L, int R)
{
   
    // Store all the divisors of array
    // element in S
    HashSet<Integer> S = new HashSet<Integer>();
 
    // Find the divisors
    for (int i = 0; i < N; i++) {
 
        int curr_ele = A[i];
 
        for (int j = 1;
             j <= Math.sqrt(curr_ele) + 1; j++) {
            if (curr_ele % j == 0) {
                S.add(j);
                S.add(curr_ele / j);
            }
        }
    }
 
    // Stores all possible required number
    // satisfying the given criteria
    HashSet<Integer> store= new HashSet<Integer>();
 
    // Insert all element [L, R]
    for (int i = L; i <= R; i++)
        store.add(i);
 
    S.remove(1);
 
    // Traverse the set
    for (int it : S) {
 
        int ele = it;
 
        int index = 1;
 
        // Remove the multiples of ele
        while (index * ele <= R) {
            store.remove(index * ele);
            index++;
        }
    }
 
    // Print the resultant numbers
    for (int i : store) {
        System.out.print(i+ " ");
    }
}
 
// Driver Code
public static void main(String[] args)
{
    int arr[] = { 3, 5 };
    int L = 1, R = 10;
    int N = arr.length;
 
    elementsCoprimeWithArr(arr, N, L, R);
}
}
 
// This code is contributed by shikhasingrajput

Python3

# python 3 program for the above approach
import math
 
# Function to find all the elements in
# the range [L, R] which are co prime
# with all array elements
def elementsCoprimeWithArr(
        A, N, L, R):
 
    # Store all the divisors of array
    # element in S
    S = []
     
    # Find the divisors
    for i in range(N):
 
        curr_ele = A[i]
 
        for j in range(1, (int)(math.sqrt(curr_ele)) + 1):
            if (curr_ele % j == 0):
                S.append(j)
                S.append(curr_ele // j)
 
    # Stores all possible required number
    # satisfying the given criteria
    store = []
    S = set(S)
 
    # Insert all element [L, R]
    for i in range(L, R+1):
        store.append(i)
 
    S.remove(1)
 
    # / Traverse the set
    for it in S:
 
        ele = it
 
        index = 1
 
        # Remove the multiples of ele
        while (index * ele <= R):
            
            store.remove(index * ele)
            index += 1
 
    # Print the resultant numbers
    for i in store:
        print(i, end=" ")
 
# Driver Code
if __name__ == "__main__":
 
    arr = [3, 5]
    L = 1
    R = 10
    N = len(arr)
 
    elementsCoprimeWithArr(arr, N, L, R)
 
    # This code is contributed by ukasp.

C#

// C# program for the above approach
using System;
using System.Collections.Generic;
 
public class GFG
{
 
// Function to find all the elements in
// the range [L, R] which are co prime
// with all array elements
static void elementsCoprimeWithArr(
    int []A, int N, int L, int R)
{
   
    // Store all the divisors of array
    // element in S
    HashSet<int> S = new HashSet<int>();
 
    // Find the divisors
    for (int i = 0; i < N; i++) {
 
        int curr_ele = A[i];
 
        for (int j = 1;
             j <= Math.Sqrt(curr_ele) + 1; j++) {
            if (curr_ele % j == 0) {
                S.Add(j);
                S.Add(curr_ele / j);
            }
        }
    }
 
    // Stores all possible required number
    // satisfying the given criteria
    HashSet<int> store= new HashSet<int>();
 
    // Insert all element [L, R]
    for (int i = L; i <= R; i++)
        store.Add(i);
 
    S.Remove(1);
 
    // Traverse the set
    foreach (int it in S) {
 
        int ele = it;
 
        int index = 1;
 
        // Remove the multiples of ele
        while (index * ele <= R) {
            store.Remove(index * ele);
            index++;
        }
    }
 
    // Print the resultant numbers
    foreach (int i in store) {
        Console.Write(i+ " ");
    }
}
 
// Driver Code
public static void Main(String[] args)
{
    int []arr = { 3, 5 };
    int L = 1, R = 10;
    int N = arr.Length;
 
    elementsCoprimeWithArr(arr, N, L, R);
}
}
 
// This code is contributed by shikhasingrajput
Producción: 

8 7 2 1 4

 

Complejidad de tiempo: O(N*sqrt(M)), donde M es el número máximo de elementos de la array .
Espacio auxiliar: O(max(R – L, N))

Publicación traducida automáticamente

Artículo escrito por aniket173000 y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *