Encuentre un par distinto (x, y) en un rango dado tal que x divida a y

Dado un rango de números enteros positivos de l a r. Encuentre un par de enteros (x, y) tal que l <= x, y <= r, x != y y x divida a y. 
Si hay varios pares, debe encontrar cualquiera de ellos.

Ejemplos: 

Input : 1 10 
Output : 1 2

Input : 2 4
Output : 2 4

La solución de fuerza bruta es atravesar el rango dado de (l, r) y encontrar la primera ocurrencia donde x divide a y yx!=y. Esta solución es factible si la diferencia entre l y r es pequeña. 
La complejidad temporal de esta solución es O((rl)*(rl)).
Los siguientes son códigos basados ​​en soluciones de fuerza bruta. 

C++

// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
void findpair(int l, int r)
{
    int c = 0;
    for (int i = l; i <= r; i++) {
        for (int j = i + 1; j <= r; j++) {
            if (j % i == 0 && j != i) {
                cout << i << ", " << j;
                c = 1;
                break;
            }
        }
        if (c == 1)
            break;
    }
}
 
int main()
{
    int l = 1, r = 10;
    findpair(l, r);
}

Java

// Java implementation of the approach
class GFG
{
 
static void findpair(int l, int r)
{
    int c = 0;
    for (int i = l; i <= r; i++)
    {
        for (int j = i + 1; j <= r; j++)
        {
            if (j % i == 0 && j != i)
            {
                System.out.println( i +", " + j);
                c = 1;
                break;
            }
        }
        if (c == 1)
            break;
    }
}
 
// Driver code
public static void main(String args[])
{
    int l = 1, r = 10;
    findpair(l, r);
}
}
 
// This code is contributed by Arnab Kundu

Python 3

# Python 3 implementation of the approach
def findpair(l, r):
    c = 0
    for i in range(l, r + 1):
        for j in range(i + 1, r + 1):
            if (j % i == 0 and j != i):
                print( i, ", ", j)
                c = 1
                break
        if (c == 1):
            break
     
# Driver Code
if __name__ == "__main__":
 
    l = 1
    r = 10
    findpair(l, r)
 
# This code is contributed by ita_c

C#

// C# implementation of the approach
using System;
 
class GFG
{
     
static void findpair(int l, int r)
{
    int c = 0;
    for (int i = l; i <= r; i++)
    {
        for (int j = i + 1; j <= r; j++)
        {
            if (j % i == 0 && j != i)
            {
                Console.Write( i + ", " + j);
                c = 1;
                break;
            }
        }
        if (c == 1)
            break;
    }
}
 
// Driver code
static void Main()
{
    int l = 1, r = 10;
    findpair(l, r);
}
}
 
// This code is contributed by mits

PHP

<?php
// PHP implementation of the approach
function findpair($l, $r)
{
    $c = 0;
    for ($i = $l; $i <= $r; $i++)
    {
        for ($j = $i + 1; $j <= $r; $j++)
        {
            if ($j % $i == 0 && $j != $i)
            {
                echo($i . ", " . $j);
                $c = 1;
                break;
            }
        }
        if ($c == 1)
            break;
    }
}
 
// Driver code
$l = 1; $r = 10;
findpair($l, $r);
 
// This code is contributed
// by Code_Mech.
?>

Javascript

<script>
 
// JavaScript implementation of the approach
 
function findpair(l,r)
{
    let c = 0;
    for (let i = l; i <= r; i++)
    {
        for (let j = i + 1; j <= r; j++)
        {
            if (j % i == 0 && j != i)
            {
                document.write( i +", " + j+"<br>");
                c = 1;
                break;
            }
        }
        if (c == 1)
            break;
    }
}
 
// Driver code
let l = 1, r = 10;
findpair(l, r);
 
 
// This code is contributed by avanitrachhadiya2155
 
</script>
Producción: 

1, 2

 

Solución eficiente: 
el problema se puede resolver en complejidad de tiempo O(1) si encuentra el valor de l y 2l.
Explicación:  
1) Como sabemos, el valor más pequeño de y/x que puede tener es 2 y si cualquier valor mayor está en el rango, entonces 2 también está en el rango dado.
2) La diferencia entre x y 2x también aumenta cuando aumentas el valor de x. Entonces, l y 2l serán el par mínimo para caer en el rango dado.
A continuación se muestra la implementación del enfoque anterior:  

C++

// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to return the possible pair
void findpair(int l, int r)
{
    // ans1, ans2 store value of x
    // and y respectively
    int ans1 = l;
    int ans2 = 2 * l;
 
    cout << ans1 << ", " << ans2 << endl;
}
 
// Driver Code
int main()
{
    int l = 1, r = 10;
    findpair(l, r);
}

Java

// Java implementation of the approach
class GFG
{
 
// Function to return the possible pair
static void findpair(int l, int r)
{
    // ans1, ans2 store value of x
    // and y respectively
    int ans1 = l;
    int ans2 = 2 * l;
 
    System.out.println( ans1 + ", " + ans2 );
}
 
// Driver Code
public static void main(String args[])
{
    int l = 1, r = 10;
    findpair(l, r);
}
}
 
// This code is contruibuted by Arnab Kundu

Python3

# Python3 implementation of the approach
 
# Function to return the possible pair
def findpair(l, r):
     
    # ans1, ans2 store value of x
    # and y respectively
    ans1 = l
    ans2 = 2 * l
 
    print(ans1, ", ", ans2)
 
# Driver Code
if __name__ == '__main__':
    l, r = 1, 10
    findpair(l, r)
 
# This code is contributed
# by 29AjayKumar

C#

// C# implementation of the approach
using System;
 
class GFG
{
 
    // Function to return the possible pair
    static void findpair(int l, int r)
    {
        // ans1, ans2 store value of x
        // and y respectively
        int ans1 = l;
        int ans2 = 2 * l;
     
        Console.WriteLine( ans1 + ", " + ans2 );
    }
     
    // Driver Code
    public static void Main()
    {
        int l = 1, r = 10;
        findpair(l, r);
    }
}
 
// This code is contruibuted by Ryuga

PHP

<?php
// PHP implementation of the approach
 
// Function to return the possible pair
function findpair($l, $r)
{
    // ans1, ans2 store value of x
    // and y respectively
    $ans1 = $l;
    $ans2 = 2 * $l;
 
    echo ($ans1 . ", " . $ans2);
}
 
// Driver Code
$l = 1; $r = 10;
findpair($l, $r);
 
// This code contributed by Rajput-Ji
?>

Javascript

<script>
// Javascript implementation of the approach
 
// Function to return the possible pair
function findpair(l,r)
{
    // ans1, ans2 store value of x
    // and y respectively
    let ans1 = l;
    let ans2 = 2 * l;
  
    document.write( ans1 + ", " + ans2 );
}
 
// Driver Code
let l = 1, r = 10;
findpair(l, r);
 
 
// This code is contributed by rag2127
</script>
Producción: 

1, 2

 

Publicación traducida automáticamente

Artículo escrito por akhand_mishra y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *