Dado un gráfico no dirigido de valor binario con V vértices y E aristas, la tarea es encontrar los equivalentes octales de todos los componentes conectados del gráfico. Se puede considerar que un gráfico con valores binarios tiene solo números binarios (0 o 1) como valores de vértice.
Ejemplos:
Entrada: E = 4, V = 7
Salida:
String = 0 1 Equivalente octal = 1
String = 0 0 0 Equivalente octal = 0
String = 1 1 Equivalente octal = 3
Explicación:
En el caso del primer componente conectado, la string binaria es [0, 1]
Por lo tanto, el binario string = “01” y número binario = 01
Por lo tanto, el equivalente octal es 1Entrada: E = 6, V = 10
Salida:
String = 1 Equivalente octal = 1
String = 0 0 1 0 Equivalente octal = 2
String = 1 1 0 Equivalente octal = 6
String = 1 0 Equivalente octal = 2
Enfoque: la idea es utilizar el recorrido transversal de búsqueda en profundidad para realizar un seguimiento de los componentes conectados en el gráfico no dirigido, como se explica en este artículo. Para cada componente conectado, se muestra la string binaria y el valor octal equivalente se calcula a partir del valor binario (como se explica en este artículo ) y se imprime.
A continuación se muestra la implementación del enfoque anterior:
C++
// C++ implementation to find // octal equivalents of // all connected components #include <bits/stdc++.h> using namespace std; // Function to traverse the undirected // graph using the Depth first traversal void depthFirst(int v, vector<int> graph[], vector<bool>& visited, vector<int>& storeChain) { // Marking the visited // vertex as true visited[v] = true; // Store the connected chain storeChain.push_back(v); for (auto i : graph[v]) { if (visited[i] == false) { // Recursive call to // the DFS algorithm depthFirst(i, graph, visited, storeChain); } } } // Function to create map between binary // number and its equivalent octal value void createMap(unordered_map<string, char>* um) { (*um)["000"] = '0'; (*um)["001"] = '1'; (*um)["010"] = '2'; (*um)["011"] = '3'; (*um)["100"] = '4'; (*um)["101"] = '5'; (*um)["110"] = '6'; (*um)["111"] = '7'; } // Function to return octal // equivalent of each connected // component string Octal(string bin) { int l = bin.size(); int t = bin.find_first_of('.'); // length of string before '.' int len_left = t != -1 ? t : l; // add min 0's in the beginning to make // left substring length divisible by 3 for (int i = 1; i <= (3 - len_left % 3) % 3; i++) bin = '0' + bin; // if decimal point exists if (t != -1) { // length of string after '.' int len_right = l - len_left - 1; // add min 0's in the end to make right // substring length divisible by 3 for (int i = 1; i <= (3 - len_right % 3) % 3; i++) bin = bin + '0'; } // create map between binary and its // equivalent octal code unordered_map<string, char> bin_oct_map; createMap(&bin_oct_map); int i = 0; string octal = ""; while (1) { // one by one extract from left, // substring of size 3 and // add its octal code octal += bin_oct_map[bin.substr(i, 3)]; i += 3; if (i == bin.size()) break; // if '.' is encountered // add it to result if (bin.at(i) == '.') { octal += '.'; i++; } } // required octal number return octal; } // Function to find the octal equivalents // of all connected components void octalValue( vector<int> graph[], int vertices, vector<int> values) { // Initializing boolean array // to mark visited vertices vector<bool> visited(1001, false); // Following loop invokes DFS algorithm for (int i = 1; i <= vertices; i++) { if (visited[i] == false) { // Variable to hold // temporary length int sizeChain; // Container to store each chain vector<int> storeChain; // DFS algorithm depthFirst(i, graph, visited, storeChain); // Variable to hold each chain size sizeChain = storeChain.size(); // Container to store values // of vertices of individual chains int chainValues[sizeChain + 1]; // Storing the values of each chain for (int i = 0; i < sizeChain; i++) { int temp = values[storeChain[i] - 1]; chainValues[i] = temp; } // Printing binary chain cout << "Chain = "; for (int i = 0; i < sizeChain; i++) { cout << chainValues[i] << " "; } cout << "\t"; // Converting the array with vertex // values to a binary string // using string stream stringstream ss; ss << chainValues[0]; string s = ss.str(); for (int i = 1; i < sizeChain; i++) { stringstream ss1; ss1 << chainValues[i]; string s1 = ss1.str(); s.append(s1); } // Printing the octal values cout << "Octal equivalent = "; cout << Octal(s) << endl; } } } // Driver code to test above function int main() { // Initializing graph in the // form of adjacency list vector<int> graph[1001]; // Defining the number // of edges and vertices int E, V; E = 4; V = 7; // Assigning the values for each // vertex of the undirected graph vector<int> values; values.push_back(0); values.push_back(1); values.push_back(0); values.push_back(0); values.push_back(0); values.push_back(1); values.push_back(1); // Constructing the undirected graph graph[1].push_back(2); graph[2].push_back(1); graph[3].push_back(4); graph[4].push_back(3); graph[4].push_back(5); graph[5].push_back(4); graph[6].push_back(7); graph[7].push_back(6); octalValue(graph, V, values); return 0; }
Java
// Java implementation to find // octal equivalents of all // connected components import java.io.*; import java.util.*; class GFG{ // Function to traverse the undirected // graph using the Depth first traversal static void depthFirst(int v, List<List<Integer>> graph, boolean[] visited, List<Integer> storeChain) { // Marking the visited // vertex as true visited[v] = true; // Store the connected chain storeChain.add(v); for(int i : graph.get(v)) { if (visited[i] == false) { // Recursive call to // the DFS algorithm depthFirst(i, graph, visited, storeChain); } } } // Function to create map between binary // number and its equivalent hexadecimal static void createMap(Map<String, Character> um) { um.put("000", '0'); um.put("001", '1'); um.put("010", '2'); um.put("011", '3'); um.put("100", '4'); um.put("101", '5'); um.put("110", '6'); um.put("111", '7'); } // Function to return octal // equivalent of each connected // component static String octal(String bin) { int l = bin.length(); int t = bin.indexOf('.'); // Length of string before '.' int len_left = t != -1 ? t : l; // Add min 0's in the beginning to make // left substring length divisible by 3 for(int i = 1; i <= (3 - len_left % 3) % 3; i++) bin = '0' + bin; // If decimal point exists if (t != -1) { // Length of string after '.' int len_right = l - len_left - 1; // Add min 0's in the end to make right // substring length divisible by 3 for(int i = 1; i <= (3 - len_right % 3) % 3; i++) bin = bin + '0'; } // Create map between binary and its // equivalent octal code Map<String, Character> bin_oct_map = new HashMap<String, Character>(); createMap(bin_oct_map); int i = 0; String octal = ""; while (true) { // One by one extract from left, // substring of size 3 and // add its octal code octal += bin_oct_map.get( bin.substring(i, i + 3)); i += 3; if (i == bin.length()) break; // If '.' is encountered // add it to result if (bin.charAt(i) == '.') { octal += '.'; i++; } } // Required octal number return octal; } // Function to find the octal equivalents // of all connected components static void octalValue(List<List<Integer>> graph, int vertices, List<Integer> values) { // Initializing boolean array // to mark visited vertices boolean[] visited = new boolean[1001]; // Following loop invokes DFS algorithm for(int i = 1; i <= vertices; i++) { if (visited[i] == false) { // Variable to hold // temporary length int sizeChain; // Container to store each chain List<Integer> storeChain = new ArrayList<Integer>(); // DFS algorithm depthFirst(i, graph, visited, storeChain); // Variable to hold each chain size sizeChain = storeChain.size(); // Container to store values // of vertices of individual chains int[] chainValues = new int[sizeChain + 1]; // Storing the values of each chain for(int j = 0; j < sizeChain; j++) { int temp = values.get( storeChain.get(j) - 1); chainValues[j] = temp; } // Printing binary chain System.out.print("Chain = "); for(int j = 0; j < sizeChain; j++) { System.out.print(chainValues[j] + " "); } System.out.print("\t"); // Converting the array with vertex // values to a binary string String s = ""; for(int j = 0; j < sizeChain; j++) { String s1 = String.valueOf( chainValues[j]); s += s1; } // Printing the octal values System.out.println("Octal equivalent = " + octal(s)); } } } // Driver code public static void main(String[] args) { // Initializing graph in the // form of adjacency list @SuppressWarnings("unchecked") List<List<Integer>> graph = new ArrayList(); for(int i = 0; i < 1001; i++) graph.add(new ArrayList<Integer>()); // Defining the number // of edges and vertices int E = 4, V = 7; // Assigning the values for each // vertex of the undirected graph List<Integer> values = new ArrayList<Integer>(); values.add(0); values.add(1); values.add(0); values.add(0); values.add(0); values.add(1); values.add(1); // Constructing the undirected graph graph.get(1).add(2); graph.get(2).add(1); graph.get(3).add(4); graph.get(4).add(3); graph.get(4).add(5); graph.get(5).add(4); graph.get(6).add(7); graph.get(7).add(6); octalValue(graph, V, values); } } // This code is contributed by jithin
Chain = 0 1 Octal equivalent = 1 Chain = 0 0 0 Octal equivalent = 0 Chain = 1 1 Octal equivalent = 3
Publicación traducida automáticamente
Artículo escrito por PratikBasu y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA