Equivalentes octales de componentes conectados en gráfico de valor binario

Dado un gráfico no dirigido de valor binario con V vértices y E aristas, la tarea es encontrar los equivalentes octales de todos los componentes conectados del gráfico. Se puede considerar que un gráfico con valores binarios tiene solo números binarios (0 o 1) como valores de vértice.

Ejemplos:  

Entrada: E = 4, V = 7 

Salida: 
String = 0 1 Equivalente octal = 1 
String = 0 0 0 Equivalente octal = 0 
String = 1 1 Equivalente octal = 3 
Explicación: 
En el caso del primer componente conectado, la string binaria es [0, 1] 
Por lo tanto, el binario string = “01” y número binario = 01 
Por lo tanto, el equivalente octal es 1

Entrada: E = 6, V = 10  

Salida: 
String = 1 Equivalente octal = 1 
String = 0 0 1 0 Equivalente octal = 2 
String = 1 1 0 Equivalente octal = 6 
String = 1 0 Equivalente octal = 2

Enfoque: la idea es utilizar el recorrido transversal de búsqueda en profundidad para realizar un seguimiento de los componentes conectados en el gráfico no dirigido, como se explica en este artículo. Para cada componente conectado, se muestra la string binaria y el valor octal equivalente se calcula a partir del valor binario (como se explica en este artículo ) y se imprime. 

A continuación se muestra la implementación del enfoque anterior:  

C++

// C++ implementation to find
// octal equivalents of
// all connected components
 
#include <bits/stdc++.h>
 
using namespace std;
 
// Function to traverse the undirected
// graph using the Depth first traversal
void depthFirst(int v, vector<int> graph[],
                vector<bool>& visited,
                vector<int>& storeChain)
{
    // Marking the visited
    // vertex as true
    visited[v] = true;
 
    // Store the connected chain
    storeChain.push_back(v);
 
    for (auto i : graph[v]) {
        if (visited[i] == false) {
 
            // Recursive call to
            // the DFS algorithm
            depthFirst(i, graph,
                       visited, storeChain);
        }
    }
}
 
// Function to create map between binary
// number and its equivalent octal value
void createMap(unordered_map<string, char>* um)
{
    (*um)["000"] = '0';
    (*um)["001"] = '1';
    (*um)["010"] = '2';
    (*um)["011"] = '3';
    (*um)["100"] = '4';
    (*um)["101"] = '5';
    (*um)["110"] = '6';
    (*um)["111"] = '7';
}
 
// Function to return octal
// equivalent of each connected
// component
string Octal(string bin)
{
    int l = bin.size();
    int t = bin.find_first_of('.');
 
    // length of string before '.'
    int len_left = t != -1 ? t : l;
 
    // add min 0's in the beginning to make
    // left substring length divisible by 3
    for (int i = 1;
         i <= (3 - len_left % 3) % 3;
         i++)
        bin = '0' + bin;
 
    // if decimal point exists
    if (t != -1) {
        // length of string after '.'
        int len_right = l - len_left - 1;
 
        // add min 0's in the end to make right
        // substring length divisible by 3
        for (int i = 1;
             i <= (3 - len_right % 3) % 3;
             i++)
            bin = bin + '0';
    }
 
    // create map between binary and its
    // equivalent octal code
    unordered_map<string, char> bin_oct_map;
    createMap(&bin_oct_map);
 
    int i = 0;
    string octal = "";
 
    while (1) {
 
        // one by one extract from left,
        // substring of size 3 and
        // add its octal code
        octal += bin_oct_map[bin.substr(i, 3)];
        i += 3;
        if (i == bin.size())
            break;
 
        // if '.' is encountered
        // add it to result
        if (bin.at(i) == '.') {
            octal += '.';
            i++;
        }
    }
 
    // required octal number
    return octal;
}
 
// Function to find the octal equivalents
// of all connected components
void octalValue(
    vector<int> graph[], int vertices,
    vector<int> values)
{
    // Initializing boolean array
    // to mark visited vertices
    vector<bool> visited(1001, false);
 
    // Following loop invokes DFS algorithm
    for (int i = 1; i <= vertices; i++) {
        if (visited[i] == false) {
 
            // Variable to hold
            // temporary length
            int sizeChain;
 
            // Container to store each chain
            vector<int> storeChain;
 
            // DFS algorithm
            depthFirst(i, graph,
                       visited, storeChain);
 
            // Variable to hold each chain size
            sizeChain = storeChain.size();
 
            // Container to store values
            // of vertices of individual chains
            int chainValues[sizeChain + 1];
 
            // Storing the values of each chain
            for (int i = 0; i < sizeChain; i++) {
 
                int temp
                    = values[storeChain[i] - 1];
                chainValues[i] = temp;
            }
 
            // Printing binary chain
            cout << "Chain = ";
            for (int i = 0; i < sizeChain; i++) {
                cout << chainValues[i] << " ";
            }
            cout << "\t";
 
            // Converting the array with vertex
            // values to a binary string
            // using string stream
            stringstream ss;
            ss << chainValues[0];
            string s = ss.str();
 
            for (int i = 1; i < sizeChain; i++) {
                stringstream ss1;
                ss1 << chainValues[i];
                string s1 = ss1.str();
                s.append(s1);
            }
 
            // Printing the octal values
            cout << "Octal equivalent = ";
            cout << Octal(s) << endl;
        }
    }
}
 
// Driver code to test above function
int main()
{
    // Initializing graph in the
    // form of adjacency list
    vector<int> graph[1001];
 
    // Defining the number
    // of edges and vertices
    int E, V;
    E = 4;
    V = 7;
 
    // Assigning the values for each
    // vertex of the undirected graph
    vector<int> values;
    values.push_back(0);
    values.push_back(1);
    values.push_back(0);
    values.push_back(0);
    values.push_back(0);
    values.push_back(1);
    values.push_back(1);
 
    // Constructing the undirected graph
    graph[1].push_back(2);
    graph[2].push_back(1);
    graph[3].push_back(4);
    graph[4].push_back(3);
    graph[4].push_back(5);
    graph[5].push_back(4);
    graph[6].push_back(7);
    graph[7].push_back(6);
 
    octalValue(graph, V, values);
    return 0;
}

Java

// Java implementation to find
// octal equivalents of all
// connected components
import java.io.*;
import java.util.*;
 
class GFG{
 
// Function to traverse the undirected
// graph using the Depth first traversal
static void depthFirst(int v,
                       List<List<Integer>> graph,
                       boolean[] visited,
                       List<Integer> storeChain)
{
     
    // Marking the visited
    // vertex as true
    visited[v] = true;
 
    // Store the connected chain
    storeChain.add(v);
 
    for(int i : graph.get(v))
    {
        if (visited[i] == false)
        {
             
            // Recursive call to
            // the DFS algorithm
            depthFirst(i, graph, visited,
                       storeChain);
        }
    }
}
 
// Function to create map between binary
// number and its equivalent hexadecimal
static void createMap(Map<String, Character> um)
{
    um.put("000", '0');
    um.put("001", '1');
    um.put("010", '2');
    um.put("011", '3');
    um.put("100", '4');
    um.put("101", '5');
    um.put("110", '6');
    um.put("111", '7');
}
 
// Function to return octal
// equivalent of each connected
// component
static String octal(String bin)
{
    int l = bin.length();
    int t = bin.indexOf('.');
 
    // Length of string before '.'
    int len_left = t != -1 ? t : l;
 
    // Add min 0's in the beginning to make
    // left substring length divisible by 3
    for(int i = 1;
            i <= (3 - len_left % 3) % 3;
            i++)
        bin = '0' + bin;
 
    // If decimal point exists
    if (t != -1)
    {
         
        // Length of string after '.'
        int len_right = l - len_left - 1;
 
        // Add min 0's in the end to make right
        // substring length divisible by 3
        for(int i = 1;
                i <= (3 - len_right % 3) % 3;
                i++)
            bin = bin + '0';
    }
 
    // Create map between binary and its
    // equivalent octal code
    Map<String,
        Character> bin_oct_map = new HashMap<String,
                                             Character>();
    createMap(bin_oct_map);
 
    int i = 0;
    String octal = "";
 
    while (true)
    {
         
        // One by one extract from left,
        // substring of size 3 and
        // add its octal code
        octal += bin_oct_map.get(
            bin.substring(i, i + 3));
             
        i += 3;
        if (i == bin.length())
            break;
 
        // If '.' is encountered
        // add it to result
        if (bin.charAt(i) == '.')
        {
            octal += '.';
            i++;
        }
    }
 
    // Required octal number
    return octal;
}
 
// Function to find the octal equivalents
// of all connected components
static void octalValue(List<List<Integer>> graph,
                       int vertices,
                       List<Integer> values)
{
     
    // Initializing boolean array
    // to mark visited vertices
    boolean[] visited = new boolean[1001];
 
    // Following loop invokes DFS algorithm
    for(int i = 1; i <= vertices; i++)
    {
        if (visited[i] == false)
        {
             
            // Variable to hold
            // temporary length
            int sizeChain;
 
            // Container to store each chain
            List<Integer> storeChain = new ArrayList<Integer>();
 
            // DFS algorithm
            depthFirst(i, graph, visited, storeChain);
 
            // Variable to hold each chain size
            sizeChain = storeChain.size();
 
            // Container to store values
            // of vertices of individual chains
            int[] chainValues = new int[sizeChain + 1];
 
            // Storing the values of each chain
            for(int j = 0; j < sizeChain; j++)
            {
                int temp = values.get(
                    storeChain.get(j) - 1);
                chainValues[j] = temp;
            }
 
            // Printing binary chain
            System.out.print("Chain = ");
 
            for(int j = 0; j < sizeChain; j++)
            {
                System.out.print(chainValues[j] + " ");
            }
 
            System.out.print("\t");
 
            // Converting the array with vertex
            // values to a binary string
            String s = "";
            for(int j = 0; j < sizeChain; j++)
            {
                String s1 = String.valueOf(
                    chainValues[j]);
                s += s1;
            }
 
            // Printing the octal values
            System.out.println("Octal equivalent = " +
                                octal(s));
        }
    }
}
 
// Driver code
public static void main(String[] args)
{
     
    // Initializing graph in the
    // form of adjacency list
    @SuppressWarnings("unchecked")
    List<List<Integer>> graph = new ArrayList();
 
    for(int i = 0; i < 1001; i++)
        graph.add(new ArrayList<Integer>());
 
    // Defining the number
    // of edges and vertices
    int E = 4, V = 7;
 
    // Assigning the values for each
    // vertex of the undirected graph
    List<Integer> values = new ArrayList<Integer>();
    values.add(0);
    values.add(1);
    values.add(0);
    values.add(0);
    values.add(0);
    values.add(1);
    values.add(1);
 
    // Constructing the undirected graph
    graph.get(1).add(2);
    graph.get(2).add(1);
    graph.get(3).add(4);
    graph.get(4).add(3);
    graph.get(4).add(5);
    graph.get(5).add(4);
    graph.get(6).add(7);
    graph.get(7).add(6);
 
    octalValue(graph, V, values);
}
}
 
// This code is contributed by jithin
Producción: 

Chain = 0 1     Octal equivalent = 1
Chain = 0 0 0     Octal equivalent = 0
Chain = 1 1     Octal equivalent = 3











 

Publicación traducida automáticamente

Artículo escrito por PratikBasu y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *