Dadas dos opciones de inversión A y B, tenemos que encontrar la inversión menos riesgosa de las dos. Las dos inversiones A y B están representadas cada una por una array. Cada elemento de la array es un resultado de inversión probable. Por lo tanto, cada elemento de la array es un par de dos valores. El primer valor es la cantidad de dinero recibido y el segundo valor es la probabilidad de que se pueda recibir ese dinero. Por ejemplo, si A = [(100,0,1), (200,0,2) (300,0,7)], significa que hay un 10 % de probabilidad de ganar 100 rupias, un 20 % de probabilidad de ganar 200 rupias y un 70 % de probabilidad de ganar Rs 300 de la inversión A.
Tenemos que usar un enfoque estadístico para resolver el problema. Para cada inversión, primero calculamos una cantidad promedio de dinero que se puede ganar con ella. En segundo lugar, también calculamos la desviación estándar del dinero ganado. Luego necesitamos normalizar esta desviación estándar dividiéndola por la media.
Cada resultado probable es una observación. La probabilidad de cada cantidad de dinero es su frecuencia. Dado que las observaciones se dan con frecuencias, debemos aplicar las siguientes fórmulas para calcular la media y la desviación estándar
Si denota el conjunto de observaciones .
Media =
Desviación estándar
Tomemos un ejemplo para demostrar cómo aplicar este método.
Ejemplo:
Input: A = [(0,0.1), (100,0.1), (200,0.2), (333,0.3), (400,0.3) ] B = [ (100,0.1), (200,0.5), (700,0.4) ] Explanation: Mean Investment of A Index | Outcome | Probability | Probability*Outcome (i) (xi) (fi) xi*fi ---------------------------------------------------------- 1 0 0.1 0 2 100 0.1 10 3 200 0.2 40 4 333 0.3 99.9 5 400 0.3 120 ---------------------------------------------------------- Total: 1.0 269.1 Mean = 269.1/1 = 269.1 Mean Investment of B: Index | Outcome | Probability | Probability*Outcome (i) (xi) (fi) xi*fi ---------------------------------------------------------- 1 100 0.1 10 2 200 0.5 100 3 700 0.4 280 ---------------------------------------------------------- Total: 1.0 390 Mean = 390/1 = 390.1 Standard Deviation of A Mean = 269.1 Index | Outcome | Probability | (xi-Mean)^2 | A*fi (i) (xi) (fi) (A) ---------------------------------------------------------- 1 0 0.1 72414.81 7241.481 2 100 0.1 28594.81 2859.481 3 200 0.2 4774.81 954.962 4 333 0.3 4083.21 1224.963 5 400 0.3 17134.81 5140.443 ---------------------------------------------------------- Total: 1.0 17421.33 Standard Deviation = sqrt(17421.33/1) = 131.989 Normalized Standard Deviation = 131.989/269.1 = 0.49 Standard Deviation of B Mean = 390.1 Index | Outcome | Probability | (xi-Mean)^2 | A*fi (i) (xi) (fi) (A) ---------------------------------------------------------- 1 100 0.1 84158.01 8415.801 2 200 0.5 36138.01 18069.005 3 700 0.4 96100.00 38440.000 ---------------------------------------------------------- Total: 1.0 64924.801 Standard Deviation = sqrt(64924.801/1) = 254.803 Normalized Standard Deviation: 254.803 / 390.1 = 0.65 Since Investment A has lesser normalized standard deviation, it is less risky. Input: A = [(0,0.1), (100,0.1), (200,0.2), (333,0.3), (400,0.3) ] B = [ (100,0.1), (200,0.5), (700,0.4) ] Explanation: For Investment A Average: 269.9 Standard Deviation: 131.987 Normalised Std: 0.489024 For Investment B Average: 258.333 Standard Deviation: 44.8764 Normalised Std: 0.173715 Investment B is less risky
La implementación del problema se muestra a continuación.
C++
// C++ code for above approach #include <iostream> #include <vector> #include <algorithm> #include <cmath> using namespace std; // First Item in the pair is the // value of observation (xi). // Second Item in the pair is // the frequency of xi (fi) typedef pair<float,float> Data; // Vector stores the observation // in pairs of format (xi, fi), // where xi = value of observation typedef vector<Data> Vector; // Function to calculate the // summation of fi*xi float sigma_fx(const Vector & v) { float sum = 0; for ( auto i : v) { sum += i.first * i.second; } return sum; } // Function to calculate summation fi float sigma_f(const Vector & v) { float sum = 0.0; for ( auto i : v) { sum += i.second; } return sum; } // Function to calculate the mean // of the set of observations v float calculate_mean(const Vector & v) { return sigma_fx(v) / sigma_f(v); } // Function to calculate the std // deviation of set of observations v float calculate_std(const Vector & v) { // Get sum of frequencies float f = sigma_f(v); // Get the mean of the set // of observations float mean = sigma_fx(v) / f; float sum = 0; for (auto i: v) { sum += (i.first-mean)* (i.first-mean)*i.second; } return sqrt(sum/f); } // Driver Code int main() { Vector A = { {0,0.1}, {100,0.1}, {200,0.2}, {333,0.3}, {400,0.3}}; Vector B = { {100,0.1}, {200,0.5}, {700,0.4}}; float avg_A = calculate_mean(A); float avg_B = calculate_mean(B); float std_A = calculate_std(A); float std_B = calculate_std(B); cout << "For Investment A" << endl; cout << "Average: " << avg_A << endl; cout << "Standard Deviation: " << std_A << endl; cout << "Normalised Std: " << std_A / avg_A << endl; cout << "For Investment B" << endl; cout << "Average: " << avg_B << endl; cout << "Standard Deviation: " << std_B << endl; cout << "Normalised Std: " << std_B / avg_B << endl; (std_B/avg_B) < (std_A/avg_A) ? cout << "Investment B is less risky\n": cout << "Investment A is less risky\n"; return 0; }
Java
// Java code for above approach import java.util.*; class GFG { static class pair { float first, second; public pair(float first, float second) { this.first = first; this.second = second; } } // First Item in the pair is the // value of observation (xi). // Second Item in the pair is // the frequency of xi (fi) // Vector stores the observation // in pairs of format (xi, fi), // where xi = value of observation static Vector<pair> Vector; // Function to calculate the // summation of fi*xi static float sigma_fx(pair[] a) { float sum = 0; for (pair i : a) { sum += i.first * i.second; } return sum; } // Function to calculate summation fi static float sigma_f(pair[] a) { float sum = 0.0f; for (pair i : a) { sum += i.second; } return sum; } // Function to calculate the mean // of the set of observations v static float calculate_mean(pair[] a) { return sigma_fx(a) / sigma_f(a); } // Function to calculate the std // deviation of set of observations v static float calculate_std(pair[] a) { // Get sum of frequencies float f = sigma_f(a); // Get the mean of the set // of observations float mean = sigma_fx(a) / f; float sum = 0; for (pair i : a) { sum += (i.first - mean) * (i.first - mean) * i.second; } return (float) Math.sqrt(sum / f); } // Driver Code public static void main(String[] args) { pair[] A = { new pair(0f, 0.1f), new pair(100f, 0.1f), new pair(200f, 0.2f), new pair(333f, 0.3f), new pair(400f, 0.3f) }; pair[] B = { new pair(100f, 0.1f), new pair(200f, 0.5f), new pair(700f, 0.4f) }; float avg_A = calculate_mean(A); float avg_B = calculate_mean(B); float std_A = calculate_std(A); float std_B = calculate_std(B); System.out.print("For Investment A" + "\n"); System.out.print("Average: " + avg_A + "\n"); System.out.print("Standard Deviation: " + std_A + "\n"); System.out.print("Normalised Std: " + std_A / avg_A + "\n"); System.out.print("For Investment B" + "\n"); System.out.print("Average: " + avg_B + "\n"); System.out.print("Standard Deviation: " + std_B + "\n"); System.out.print("Normalised Std: " + std_B / avg_B + "\n"); if ((std_B / avg_B) < (std_A / avg_A)) System.out.print("Investment B is less risky\n"); else System.out.print("Investment A is less risky\n"); } } // This code is contributed by PrinciRaj1992
Python3
# Python3 code for above approach # First Item in the pair is the # value of observation (xi). # Second Item in the pair is # the frequency of xi (fi) class Data: def __init__(self, x, y): self.first = x self.second = y # Vector stores the observation # in pairs of format (xi, fi), # where xi = value of observations Vector = [] # Function to calculate the # summation of fi*xi def sigma_fx(v): sum = 0 for i in v: sum += i.first * i.second return sum # Function to calculate summation fi def sigma_f(v): sum = 0.0 for i in v: sum += i.second return sum # Function to calculate the mean # of the set of observations v def calculate_mean(v): return sigma_fx(v) / sigma_f(v) # Function to calculate the std # deviation of set of observations v def calculate_std(v): # Get sum of frequencies f = sigma_f(v) # Get the mean of the set # of observations mean = sigma_fx(v) / f sum = 0 for i in v: sum += (i.first-mean) * (i.first-mean)*i.second return (sum/f) ** 0.5 # Driver Code A = [Data(0, 0.1), Data(100, 0.1), Data( 200, 0.2), Data(333, 0.3), Data(400, 0.3)] B = [Data(100, 0.1), Data(200, 0.5), Data(700, 0.4)] avg_A = calculate_mean(A) avg_B = calculate_mean(B) std_A = calculate_std(A) std_B = calculate_std(B) print("For Investment A") print("Average:", avg_A) print("Standard Deviation:", std_A) print("Normalised Std:", std_A / avg_A) print("For Investment B") print("Average:", avg_B) print("Standard Deviation:", std_B) print("Normalised Std:", std_B / avg_B) if (std_B/avg_B) < (std_A/avg_A): print("Investment B is less risky") else: print("Investment A is less risky") # This code is contributed by phasing17
C#
// C# code for above approach using System; using System.Collections.Generic; class GFG { class pair { public float first, second; public pair(float first, float second) { this.first = first; this.second = second; } } // First Item in the pair is the // value of observation (xi). // Second Item in the pair is // the frequency of xi (fi) // List stores the observation // in pairs of format (xi, fi), // where xi = value of observation static List<pair> List; // Function to calculate the // summation of fi*xi static float sigma_fx(pair[] a) { float sum = 0; foreach (pair i in a) { sum += i.first * i.second; } return sum; } // Function to calculate summation fi static float sigma_f(pair[] a) { float sum = 0.0f; foreach (pair i in a) { sum += i.second; } return sum; } // Function to calculate the mean // of the set of observations v static float calculate_mean(pair[] a) { return sigma_fx(a) / sigma_f(a); } // Function to calculate the std // deviation of set of observations v static float calculate_std(pair[] a) { // Get sum of frequencies float f = sigma_f(a); // Get the mean of the set // of observations float mean = sigma_fx(a) / f; float sum = 0; foreach (pair i in a) { sum += (i.first - mean) * (i.first - mean) * i.second; } return (float) Math.Sqrt(sum / f); } // Driver Code public static void Main(String[] args) { pair[] A = {new pair(0f, 0.1f), new pair(100f, 0.1f), new pair(200f, 0.2f), new pair(333f, 0.3f), new pair(400f, 0.3f)}; pair[] B = {new pair(100f, 0.1f), new pair(200f, 0.5f), new pair(700f, 0.4f)}; float avg_A = calculate_mean(A); float avg_B = calculate_mean(B); float std_A = calculate_std(A); float std_B = calculate_std(B); Console.Write("For Investment A" + "\n"); Console.Write("Average: " + avg_A + "\n"); Console.Write("Standard Deviation: " + std_A + "\n"); Console.Write("Normalised Std: " + std_A / avg_A + "\n"); Console.Write("For Investment B" + "\n"); Console.Write("Average: " + avg_B + "\n"); Console.Write("Standard Deviation: " + std_B + "\n"); Console.Write("Normalised Std: " + std_B / avg_B + "\n"); if ((std_B / avg_B) < (std_A / avg_A)) Console.Write("Investment B is less risky\n"); else Console.Write("Investment A is less risky\n"); } } // This code is contributed by Rajput-Ji
Javascript
// JavaScript code for above approach // First Item in the pair is the // value of observation (xi). // Second Item in the pair is // the frequency of xi (fi) class Data { constructor(x, y) { this.first = x; this.second = y; } } // Vector stores the observation // in pairs of format (xi, fi), // where xi = value of observations let Vector = new Array(); // Function to calculate the // summation of fi*xi function sigma_fx(v) { let sum = 0; for (var i of v) { sum += i.first * i.second; } return sum; } // Function to calculate summation fi function sigma_f(v) { let sum = 0.0; for (let i of v) { sum += i.second; } return sum; } // Function to calculate the mean // of the set of observations v function calculate_mean(v) { return sigma_fx(v) / sigma_f(v); } // Function to calculate the std // deviation of set of observations v function calculate_std(v) { // Get sum of frequencies let f = sigma_f(v); // Get the mean of the set // of observations let mean = sigma_fx(v) / f; let sum = 0; for (var i of v) { sum += (i.first-mean)* (i.first-mean)*i.second; } return Math.sqrt(sum/f); } // Driver Code let A = [new Data(0,0.1), new Data(100,0.1), new Data(200,0.2), new Data(333,0.3), new Data(400,0.3)]; let B = [ new Data(100,0.1), new Data(200,0.5), new Data(700,0.4)]; let avg_A = calculate_mean(A); let avg_B = calculate_mean(B); let std_A = calculate_std(A); let std_B = calculate_std(B); console.log("For Investment A"); console.log("Average: " + avg_A); console.log("Standard Deviation: " + std_A); console.log("Normalised Std: " + std_A / avg_A); console.log("For Investment B"); console.log("Average: " + avg_B); console.log("Standard Deviation: " + std_B); console.log("Normalised Std: " + std_B / avg_B); ((std_B/avg_B) < (std_A/avg_A)) ? console.log("Investment B is less risky"): console.log("Investment A is less risky"); // This code is contributed by phasing17
Producción:
For Investment A Average: 269.9 Standard Deviation: 131.987 Normalised Std: 0.489024 For Investment B Average: 390 Standard Deviation: 254.755 Normalised Std: 0.653217 Investment A is less risky
Referencias:
https://www.statcan.gc.ca/edu/power-pouvoir/ch12/5214891-eng.htm
std::accumulate cppreference.com
Publicación traducida automáticamente
Artículo escrito por Sayan Mahapatra y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA