El concepto básico de álgebra nos enseñó cómo expresar un valor desconocido usando letras como x, y, z, etc. Estas letras se denominan aquí como variables. esta expresión puede ser una combinación de variables y constantes. Cualquier valor que se coloca antes y se multiplica por una variable se denomina coeficiente. Una idea de expresar números usando letras o alfabetos sin especificar sus valores reales se define como una expresión algebraica.
Expresión algebraica
Una expresión que se compone de variables y constantes junto con operaciones algebraicas como la suma, la resta, etc. se denomina expresión algebraica. Estas Expresiones están formadas por términos. Las expresiones algebraicas son las ecuaciones cuando las operaciones como suma, resta, multiplicación, división, etc. se realizan sobre cualquier variable. Una combinación de términos mediante operaciones como suma, resta, multiplicación, división, etc. se denomina expresión algebraica (o) expresión variable. Ejemplos: 2x + 4y – 7, 3x – 10, etc.
Las expresiones anteriores se representan con la ayuda de variables desconocidas, constantes y coeficientes. La combinación de estos tres términos se denomina expresión. A diferencia de la ecuación algebraica, no tiene lados ni signo de ‘igual a’.
Tipos de expresiones algebraicas
Hay tres tipos de expresiones algebraicas según el número de términos presentes en ellas. Son expresiones algebraicas monomiales, expresiones algebraicas binomiales y expresiones algebraicas polinómicas.
- Expresión monomial: una expresión que tiene un solo término se denomina expresión monomial. Los ejemplos de expresiones monomiales incluyen 5x 4, 2xy, 2x, 8y, etc.
- Expresión binomial: una expresión algebraica que tiene dos términos y diferentes se denomina expresión binomial. Los ejemplos de binomios incluyen 5xy + 8, xyz + x 2 , etc.
- Expresión polinomial: una expresión que tiene más de un término con exponentes enteros no negativos de una variable se denomina expresión polinomial. Los ejemplos de expresión polinomial incluyen ax + by + ca, 3x 3 + 5x + 3, etc.
Otros tipos de expresión
Además de los tipos de expresiones monomio, binomial y polinomial, también existen otros tipos de expresiones que son expresiones numéricas, expresiones variables.
- Expresión numérica: una expresión que consta solo de números y operaciones, pero nunca incluye ninguna variable, se denomina expresión numérica. Algunos de los ejemplos de expresiones numéricas son 11 + 5, 14 ÷ 2, etc.
- Expresión variable: una expresión que contiene variables junto con números y operaciones para definir una expresión se denomina expresión variable. Algunos ejemplos de una expresión variable incluyen 5x + y, 4ab + 33, etc.
Algunas fórmulas algebraicas
(a + b) 2 = a 2 + 2ab + b 2
(a – b) 2 = a 2 – 2ab + b 2
(a + b)(a – b) = a 2 – b 2
(x + a)(x + b) = x2 + x(a + b) + ab
(a + b) 3 = a 3 + b 3 + 3ab(a + b)
(a – b) 3 = a 3 – b 3 – 3ab(a – b)
a 3 – b 3 = (a – b)(a 2 + ab + b 2 )
a 3 + b 3 = (a + b)(a 2 – ab + b 2 )
Evalúe 2st 2 – 5 2 para s = 4 y t = 8
Solución:
Expresión dada: s = 4 y t = 8
= 2º 2 – 5 2
Ahora pon el valor de s y t
= 2 (4)(8) 2 – 5 2
= 8(64) – 25
= 512 – 25
= 487
Algunas preguntas
Pregunta 1: Resolver para x: 5x – 50 = x + 3x
Solución:
5x – 50 = x + 3x
5x – 50 = 4x
5x – 4x = 50
x = 50
Pregunta 2: Simplifica (4x – 5) – (5x + 1)
Solución:
Dado que, (4x – 5) – (8x + 1)
Paso 1: elimine los paréntesis y aplique los signos con cuidado.
= 4x – 5 – 8x – 1
Paso 2: juntar los términos semejantes
= 4x – 8x – 5 – 1
Paso 3: Ahora suma o resta los términos semejantes
= -4x – 6
= -2(2x + 3)
Entonces el resultado final es -2(2x + 3)
Pregunta 3: Resuelva para el valor de t: 31 + t = 4 (t – 3) + 22.
Solución:
Dado: 31 + t = 4 (t – 3) +22
31 + t = 4 (t – 3) + 22
31 + t = 4t – 12 + 22
31 + t = 4t + 10
31 – 10 = 4t – t
21 = 3t
t = 21/3
t = 7
Entonces, el valor de t es 7
Pregunta 4: Resuelve y en la ecuación: -1/y = -0.25x 2 – 7.5
Solución:
Dado: -1/y = -0.25x 2 – 7.5
Multiplica ambos lados por y
⇒ (-1/y)(y) = y(-0.25x 2 – 7.5)
⇒ -1 = -0,25x 2 años – 7,5 años
⇒ -1 = y(-0.25x 2 – 7.5)
⇒ -1 = -y(-0.25x 2 – 7.5)
⇒ y = 1/ (-0,25x 2 – 7,5)
Publicación traducida automáticamente
Artículo escrito por Shivam.Pradhan y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA