Dado un número n, escribe un programa para calcular el número de formas en que los números pueden expresarse como el producto de dos factores diferentes.
Ejemplos:
Input : 12 Output : 3 12 can be expressed as 1 * 12, 2 * 6 and 3*4. Input : 36 Output : 4 36 can be expressed as 1 * 36, 2 * 18, 3 * 12 and 4 * 9.
All factors of 12 are = 1, 2, 3, 4, 6, 12 We can observe that factors always exist in pair which is equal to number. Here (1, 12), (2, 6) and (3, 4) are such pairs.
Como un número se puede expresar como el producto de dos factores, solo necesitamos encontrar el número de factores del número hasta la raíz cuadrada del número. Y solo necesitamos encontrar solo pares diferentes, por lo que en el caso de un cuadrado perfecto no incluimos ese factor.
C++
// CPP program to find number of ways // in which number expressed as // product of two different factors #include <bits/stdc++.h> using namespace std; // To count number of ways in which // number expressed as product // of two different numbers int countWays(int n) { // To store count of such pairs int count = 0; // Counting number of pairs // upto sqrt(n) - 1 for (int i = 1; i * i < n; i++) if (n % i == 0) count++; // To return count of pairs return count; } // Driver program to test countWays() int main() { int n = 12; cout << countWays(n) << endl; return 0; }
Java
// Java program to find number of ways // in which number expressed as // product of two different factors public class Main { // To count number of ways in which // number expressed as product // of two different numbers static int countWays(int n) { // To store count of such pairs int count = 0; // Counting number of pairs // upto sqrt(n) - 1 for (int i = 1; i * i < n; i++) if (n % i == 0) count++; // To return count of pairs return count; } // Driver program to test countWays() public static void main(String[] args) { int n = 12; System.out.println(countWays(n)); } }
Python 3
# Python 3 program to find number of ways # in which number expressed as # product of two different factors # To count number of ways in which # number expressed as product # of two different numbers def countWays(n): # To store count of such pairs count = 0 i = 1 # Counting number of pairs # upto sqrt(n) - 1 while ((i * i)<n) : if(n % i == 0): count += 1 i += 1 # To return count of pairs return count # Driver program to test countWays() n = 12 print (countWays(n)) # This code is contributed # by Azkia Anam.
C#
// C# program to find number of ways // in which number expressed as // product of two different factors using System; public class main { // To count number of ways in which // number expressed as product // of two different numbers static int countWays(int n) { // To store count of such pairs int count = 0; // Counting number of pairs // upto sqrt(n) - 1 for (int i = 1; i * i < n; i++) if (n % i == 0) count++; // To return count of pairs return count; } // Driver program to test countWays() public static void Main() { int n = 12; Console.WriteLine(countWays(n)); } } // This code is contributed by Anant Agarwal.
PHP
<?php // PHP program to find number of ways // in which number expressed as // product of two different factors // To count number of ways in which // number expressed as product // of two different numbers function countWays($n) { // To store count of such pairs $count = 0; // Counting number of pairs // upto sqrt(n) - 1 for ($i = 1; $i * $i < $n; $i++) if ($n % $i == 0) $count++; // To return count of pairs return $count; } // Driver Code $n = 12; echo countWays($n), "\n"; // This code is contributed by ajit ?>
Javascript
<script> // JavaScript program to find number of ways // in which number expressed as // product of two different factors // To count number of ways in which // number expressed as product // of two different numbers function countWays(n) { // To store count of such pairs let count = 0; // Counting number of pairs // upto sqrt(n) - 1 for (let i = 1; i * i < n; i++) if (n % i == 0) count++; // To return count of pairs return count; } // Driver Code let n = 12; document.write(countWays(n)); </script>
Producción:
3
Complejidad temporal: O(√n)
Espacio auxiliar: O(1)
Este artículo es una contribución de Aarti_Rathi y nuclode . Si te gusta GeeksforGeeks y te gustaría contribuir, también puedes escribir un artículo usando write.geeksforgeeks.org o enviar tu artículo por correo a review-team@geeksforgeeks.org. Vea su artículo que aparece en la página principal de GeeksforGeeks y ayude a otros Geeks.
Escriba comentarios si encuentra algo incorrecto o si desea compartir más información sobre el tema tratado anteriormente.
Publicación traducida automáticamente
Artículo escrito por GeeksforGeeks-1 y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA