Dadas dos coordenadas (x1, y1) y (x2, y2), m y n, encuentre las coordenadas que dividen la recta que une (x1, y1) y (x2, y2) en la razón m : n
Ejemplos:
Input : x1 = 1, y1 = 0, x2 = 2 y2 = 5, m = 1, n = 1 Output : (1.5, 2.5) Explanation: co-ordinates (1.5, 2.5) divides the line in ratio 1 : 1 Input : x1 = 2, y1 = 4, x2 = 4, y2 = 6, m = 2, n = 3 Output : (2.8, 4.8) Explanation: (2.8, 4.8) divides the line in the ratio 2:3
La fórmula de la sección nos dice las coordenadas del punto que divide un segmento de línea dado en dos partes tales que sus longitudes están en la relación m : n
C++
// CPP program to find point that divides // given line in given ratio. #include <iostream> using namespace std; // Function to find the section of the line void section(double x1, double x2, double y1, double y2, double m, double n) { // Applying section formula double x = ((n * x1) + (m * x2)) / (m + n); double y = ((n * y1) + (m * y2)) / (m + n); // Printing result cout << "(" << x << ", "; cout << y << ")" << endl; } // Driver code int main() { double x1 = 2, x2 = 4, y1 = 4, y2 = 6, m = 2, n = 3; section(x1, x2, y1, y2, m, n); return 0; }
Java
// Java program to find point that divides // given line in given ratio. import java.io.*; class sections { static void section(double x1, double x2, double y1, double y2, double m, double n) { // Applying section formula double x = ((n * x1) + (m * x2)) / (m + n); double y = ((n * y1) + (m * y2)) / (m + n); // Printing result System.out.println("(" + x + ", " + y + ")"); } public static void main(String[] args) { double x1 = 2, x2 = 4, y1 = 4, y2 = 6, m = 2, n = 3; section(x1, x2, y1, y2, m, n); } }
Python
# Python program to find point that divides # given line in given ratio. def section(x1, x2, y1, y2, m, n): # Applying section formula x = (float)((n * x1)+(m * x2))/(m + n) y = (float)((n * y1)+(m * y2))/(m + n) # Printing result print (x, y) x1 = 2 x2 = 4 y1 = 4 y2 = 6 m = 2 n = 3 section(x1, x2, y1, y2, m, n)
C#
// C# program to find point that divides // given line in given ratio. using System; class GFG { static void section(double x1, double x2, double y1, double y2, double m, double n) { // Applying section formula double x = ((n * x1) + (m * x2)) / (m + n); double y = ((n * y1) + (m * y2)) / (m + n); // Printing result Console.WriteLine("(" + x + ", " + y + ")"); } // Driver code public static void Main() { double x1 = 2, x2 = 4, y1 = 4, y2 = 6, m = 2, n = 3; section(x1, x2, y1, y2, m, n); } } // This code is contributed by vt_m.
PHP
<?php // PHP program to find point that // divides given line in given ratio. // Function to find the // section of the line function section($x1, $x2, $y1, $y2, $m, $n) { // Applying section formula $x = (($n * $x1) + ($m * $x2)) / ($m + $n); $y = (($n * $y1) + ($m * $y2)) / ($m + $n); // Printing result echo("(" . $x . ", "); echo($y . ")"); } // Driver code $x1 = 2; $x2 = 4; $y1 = 4; $y2 = 6; $m = 2; $n = 3; section($x1, $x2, $y1, $y2, $m, $n); // This code is contributed by Ajit. ?>
Javascript
<script> // JavaScript program to find point that divides // given line in given ratio function section(x1, x2, y1, y2, m, n) { // Applying section formula let x = ((n * x1) + (m * x2)) / (m + n); let y = ((n * y1) + (m * y2)) / (m + n); // Printing result document.write("(" + x + ", " + y + ")"); } // Driver Code let x1 = 2, x2 = 4, y1 = 4, y2 = 6, m = 2, n = 3; section(x1, x2, y1, y2, m, n) // This code is contributed by avijitmondal1998. </script>
Producción:
(2.8, 4.8)
Tiempo Complejidad: O(1)
Espacio Auxiliar: O(1)
¿Como funciona esto?
From our diagram, we can see, PS = x – x1 and RT = x2 – x We are given, PR/QR = m/n Using similarity, we can write RS/QT = PS/RT = PR/QR Therefore, we can write PS/RR = m/n (x - x1) / (x2 - x) = m/n From above, we get x = (mx2 + nx1) / (m + n) Similarly, we can solve for y.
Referencias:
http://doubleroot.in/lessons/coordinate-geometry-basics/section-formula/#.WjYXQvbhU8o
Publicación traducida automáticamente
Artículo escrito por Twinkl Bajaj y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA