Encuentre el número de raíces primitivas módulo primo

Dado un primo  p  . La tarea es contar todas las raíces primitivas de  p  .
Una raíz primitiva es un número entero x (1 <= x < p) tal que ninguno de los números enteros x – 1, x 2p  – 1, … ., x p – 2 – 1 son divisibles por  x p – 1 – 1 es divisible por  p
Ejemplos: 
 

Entrada: P = 3 
Salida:
La única raíz primitiva módulo 3 es 2. 
Entrada: P = 5 
Salida: 2  Las
raíces primitivas módulo 5 son 2 y 3. 
 

Enfoque: siempre hay al menos una raíz primitiva para todos los números primos. Entonces, usando la función totient de Euler podemos decir que f(p-1) es la respuesta requerida donde f(n) es la función totient de Euler.
A continuación se muestra la implementación del enfoque anterior: 
 

C++

// CPP program to find the number of
// primitive roots modulo prime
#include <bits/stdc++.h>
using namespace std;
 
// Function to return the count of
// primitive roots modulo p
int countPrimitiveRoots(int p)
{
    int result = 1;
    for (int i = 2; i < p; i++)
        if (__gcd(i, p) == 1)
            result++;
 
    return result;
}
 
// Driver code
int main()
{
    int p = 5;
 
    cout << countPrimitiveRoots(p - 1);
 
    return 0;
}

Java

// Java program to find the number of
// primitive roots modulo prime
 
import java.io.*;
 
class GFG {
 // Recursive function to return gcd of a and b
    static int __gcd(int a, int b)
    {
        // Everything divides 0 
        if (a == 0)
          return b;
        if (b == 0)
          return a;
        
        // base case
        if (a == b)
            return a;
        
        // a is greater
        if (a > b)
            return __gcd(a-b, b);
        return __gcd(a, b-a);
    }
 
// Function to return the count of
// primitive roots modulo p
static int countPrimitiveRoots(int p)
{
    int result = 1;
    for (int i = 2; i < p; i++)
        if (__gcd(i, p) == 1)
            result++;
 
    return result;
}
 
// Driver code
    public static void main (String[] args) {
            int p = 5;
 
    System.out.println( countPrimitiveRoots(p - 1));
    }
}
// This code is contributed by anuj_67..

Python3

# Python 3 program to find the number
# of primitive roots modulo prime
from math import gcd
 
# Function to return the count of
# primitive roots modulo p
def countPrimitiveRoots(p):
    result = 1
    for i in range(2, p, 1):
        if (gcd(i, p) == 1):
            result += 1
 
    return result
 
# Driver code
if __name__ == '__main__':
    p = 5
 
    print(countPrimitiveRoots(p - 1))
 
# This code is contributed by
# Surendra_Gangwar

C#

// C# program to find the number of
// primitive roots modulo prime
   
using System;
   
class GFG {
 // Recursive function to return gcd of a and b 
    static int __gcd(int a, int b) 
    { 
        // Everything divides 0  
        if (a == 0) 
          return b; 
        if (b == 0) 
          return a; 
          
        // base case 
        if (a == b) 
            return a; 
          
        // a is greater 
        if (a > b) 
            return __gcd(a-b, b); 
        return __gcd(a, b-a); 
    } 
   
// Function to return the count of
// primitive roots modulo p
static int countPrimitiveRoots(int p)
{
    int result = 1;
    for (int i = 2; i < p; i++)
        if (__gcd(i, p) == 1)
            result++;
   
    return result;
}
   
// Driver code
     static public void Main (String []args) {
            int p = 5;
   
    Console.WriteLine( countPrimitiveRoots(p - 1));
    }
}
// This code is contributed by Arnab Kundu

PHP

<?php
// PHP program to find the number of
// primitive roots modulo prime
 
// Recursive function to return
// gcd of a and b
function __gcd($a, $b)
{
    // Everything divides 0
    if ($a == 0)
    return b;
     
    if ($b == 0)
    return $a;
     
    // base case
    if ($a == $b)
        return $a;
     
    // a is greater
    if ($a > $b)
        return __gcd($a - $b, $b);
    return __gcd($a, $b - $a);
}
 
// Function to return the count of
// primitive roots modulo p
function countPrimitiveRoots($p)
{
    $result = 1;
    for ($i = 2; $i < $p; $i++)
        if (__gcd($i, $p) == 1)
            $result++;
 
    return $result;
}
 
// Driver code
$p = 5;
 
echo countPrimitiveRoots($p - 1);
 
// This code is contributed by anuj_67
?>

Javascript

<script>
 
// Javascript program to find the number of
// primitive roots modulo prime
 
 // Recursive function to return gcd of a and b 
 function __gcd( a,  b) 
 { 
     // Everything divides 0  
     if (a == 0) 
       return b; 
     if (b == 0) 
       return a; 
       
     // base case 
     if (a == b) 
         return a; 
       
     // a is greater 
     if (a > b) 
         return __gcd(a-b, b); 
     return __gcd(a, b-a); 
 } 
   
 
// Function to return the count of
// primitive roots modulo p
function countPrimitiveRoots(p)
{
    var result = 1;
    for (var i = 2; i < p; i++)
        if (__gcd(i, p) == 1)
            result++;
 
    return result;
}
 
// Driver code
var p = 5;
document.write( countPrimitiveRoots(p - 1));
 
</script>
Producción: 

2

 

Complejidad de tiempo: O(p * log(min(a, b))), donde a y b son dos parámetros de gcd.

Espacio auxiliar: O(log(min(a, b)))

Publicación traducida automáticamente

Artículo escrito por pawan_asipu y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *