La búsqueda primero en amplitud (BFS) se ha discutido en este artículo que utiliza la lista de adyacencia para la representación gráfica. En este artículo, se utilizará la array de adyacencia para representar el gráfico.
Representación de array de adyacencia: en la representación de array de adyacencia de un gráfico, la array mat[][] de tamaño n*n (donde n es el número de vértices) representará los bordes del gráfico donde mat[i][j] = 1 representa que hay una arista entre los vértices i y j mientras que mat[i][j] = 0 representa que no hay arista entre los vértices i y j .
A continuación se muestra la representación de la array de adyacencia del gráfico que se muestra en la imagen de arriba:
0 1 2 3 0 0 1 1 0 1 1 0 0 1 2 1 0 0 0 3 0 1 0 0
Ejemplos:
Input: source = 0
Output: 0 1 2 3 Input: source = 1
Output:1 0 2 3 4
Acercarse:
- Cree una array de tamaño n*n donde cada elemento sea 0 y represente que no hay borde en el gráfico.
- Ahora, para cada borde del gráfico entre los vértices i y j, establezca mat[i][j] = 1.
- Después de que se haya creado y llenado la array de adyacencia, encuentre el recorrido BFS del gráfico como se describe en esta publicación.
A continuación se muestra la implementación del enfoque anterior:
C++
// C++ implementation of the approach #include<bits/stdc++.h> using namespace std; vector<vector<int>> adj; // function to add edge to the graph void addEdge(int x,int y) { adj[x][y] = 1; adj[y][x] = 1; } // Function to perform BFS on the graph void bfs(int start) { // Visited vector to so that // a vertex is not visited more than once // Initializing the vector to false as no // vertex is visited at the beginning vector<bool> visited(adj.size(), false); vector<int> q; q.push_back(start); // Set source as visited visited[start] = true; int vis; while (!q.empty()) { vis = q[0]; // Print the current node cout << vis << " "; q.erase(q.begin()); // For every adjacent vertex to the current vertex for (int i = 0; i < adj[vis].size(); i++) { if (adj[vis][i] == 1 && (!visited[i])) { // Push the adjacent node to the queue q.push_back(i); // Set visited[i] = true; } } } } // Driver code int main() { // number of vertices int v = 5; // adjacency matrix adj= vector<vector<int>>(v,vector<int>(v,0)); addEdge(0,1); addEdge(0,2); addEdge(1,3); // perform bfs on the graph bfs(0); }
Java
// Java implementation of the approach import java.util.ArrayList; import java.util.Arrays; import java.util.List; class GFG{ static class Graph { // Number of vertex int v; // Number of edges int e; // Adjacency matrix int[][] adj; // Function to fill the empty // adjacency matrix Graph(int v, int e) { this.v = v; this.e = e; adj = new int[v][v]; for(int row = 0; row < v; row++) Arrays.fill(adj[row], 0); } // Function to add an edge to the graph void addEdge(int start, int e) { // Considering a bidirectional edge adj[start][e] = 1; adj[e][start] = 1; } // Function to perform BFS on the graph void BFS(int start) { // Visited vector to so that // a vertex is not visited more than once // Initializing the vector to false as no // vertex is visited at the beginning boolean[] visited = new boolean[v]; Arrays.fill(visited, false); List<Integer> q = new ArrayList<>(); q.add(start); // Set source as visited visited[start] = true; int vis; while (!q.isEmpty()) { vis = q.get(0); // Print the current node System.out.print(vis + " "); q.remove(q.get(0)); // For every adjacent vertex to // the current vertex for(int i = 0; i < v; i++) { if (adj[vis][i] == 1 && (!visited[i])) { // Push the adjacent node to // the queue q.add(i); // Set visited[i] = true; } } } } } // Driver code public static void main(String[] args) { int v = 5, e = 4; // Create the graph Graph G = new Graph(v, e); G.addEdge(0, 1); G.addEdge(0, 2); G.addEdge(1, 3); G.BFS(0); } } // This code is contributed by sanjeev2552
Python3
# Python3 implementation of the approach class Graph: adj = [] # Function to fill empty adjacency matrix def __init__(self, v, e): self.v = v self.e = e Graph.adj = [[0 for i in range(v)] for j in range(v)] # Function to add an edge to the graph def addEdge(self, start, e): # Considering a bidirectional edge Graph.adj[start][e] = 1 Graph.adj[e][start] = 1 # Function to perform DFS on the graph def BFS(self, start): # Visited vector to so that a # vertex is not visited more than # once Initializing the vector to # false as no vertex is visited at # the beginning visited = [False] * self.v q = [start] # Set source as visited visited[start] = True while q: vis = q[0] # Print current node print(vis, end = ' ') q.pop(0) # For every adjacent vertex to # the current vertex for i in range(self.v): if (Graph.adj[vis][i] == 1 and (not visited[i])): # Push the adjacent node # in the queue q.append(i) # set visited[i] = True # Driver code v, e = 5, 4 # Create the graph G = Graph(v, e) G.addEdge(0, 1) G.addEdge(0, 2) G.addEdge(1, 3) # Perform BFS G.BFS(0) # This code is contributed by ng24_7
C#
// C# implementation of the approach using System; using System.Collections.Generic; public class GFG{ class Graph { // Number of vertex public int v; // Number of edges public int e; // Adjacency matrix public int[,] adj; // Function to fill the empty // adjacency matrix public Graph(int v, int e) { this.v = v; this.e = e; adj = new int[v,v]; for(int row = 0; row < v; row++) for(int col = 0; col < v; col++) adj[row, col] = 0; } // Function to add an edge to the graph public void addEdge(int start, int e) { // Considering a bidirectional edge adj[start, e] = 1; adj[e, start] = 1; } // Function to perform BFS on the graph public void BFS(int start) { // Visited vector to so that // a vertex is not visited more than once // Initializing the vector to false as no // vertex is visited at the beginning bool[] visited = new bool[v]; List<int> q = new List<int>(); q.Add(start); // Set source as visited visited[start] = true; int vis; while (q.Count != 0) { vis = q[0]; // Print the current node Console.Write(vis + " "); q.Remove(q[0]); // For every adjacent vertex to // the current vertex for(int i = 0; i < v; i++) { if (adj[vis,i] == 1 && (!visited[i])) { // Push the adjacent node to // the queue q.Add(i); // Set visited[i] = true; } } } } } // Driver code public static void Main(String[] args) { int v = 5, e = 4; // Create the graph Graph G = new Graph(v, e); G.addEdge(0, 1); G.addEdge(0, 2); G.addEdge(1, 3); G.BFS(0); } } // This code is contributed by shikhasingrajput
0 1 2 3
Complejidad temporal: O(N*N)
Espacio auxiliar: O(N)
Publicación traducida automáticamente
Artículo escrito por DeveshRattan y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA