Dada una array borde[][2] donde (borde[i][0], borde[i][1]) define un borde en el árbol n-ario, la tarea es imprimir todos los Nodes hoja del árbol dado usando.
Ejemplos:
Input: edge[][] = {{1, 2}, {1, 3}, {2, 4}, {2, 5}, {3, 6}} Output: 4 5 6 1 / \ 2 3 / \ \ 4 5 6 Input: edge[][] = {{1, 5}, {1, 7}, {5, 6}} Output: 6 7
Enfoque: DFS se puede utilizar para recorrer el árbol completo. Realizaremos un seguimiento de los padres durante el recorrido para evitar la array de Nodes visitados. Inicialmente, para cada Node, podemos establecer una bandera y si el Node tiene al menos un hijo (es decir, un Node que no sea hoja), restableceremos la bandera. Los Nodes sin hijos son los Nodes hoja.
A continuación se muestra la implementación del enfoque anterior:
C++
// C++ implementation of the approach #include <bits/stdc++.h> using namespace std; // Function to perform DFS on the tree void dfs(list<int> t[], int node, int parent) { int flag = 1; // Iterating the children of current node for (auto ir : t[node]) { // There is at least a child // of the current node if (ir != parent) { flag = 0; dfs(t, ir, node); } } // Current node is connected to only // its parent i.e. it is a leaf node if (flag == 1) cout << node << " "; } // Driver code int main() { // Adjacency list list<int> t[1005]; // List of all edges pair<int, int> edges[] = { { 1, 2 }, { 1, 3 }, { 2, 4 }, { 3, 5 }, { 3, 6 }, { 3, 7 }, { 6, 8 } }; // Count of edges int cnt = sizeof(edges) / sizeof(edges[0]); // Number of nodes int node = cnt + 1; // Create the tree for (int i = 0; i < cnt; i++) { t[edges[i].first].push_back(edges[i].second); t[edges[i].second].push_back(edges[i].first); } // Function call dfs(t, 1, 0); return 0; }
Java
// Java implementation of the approach import java.util.*; class GFG { // Pair class static class pair { int first,second; pair(int a, int b) { first = a; second = b; } } // Function to perform DFS on the tree static void dfs(Vector t, int node, int parent) { int flag = 1; // Iterating the children of current node for (int i = 0; i < ((Vector)t.get(node)).size(); i++) { int ir = (int)((Vector)t.get(node)).get(i); // There is at least a child // of the current node if (ir != parent) { flag = 0; dfs(t, ir, node); } } // Current node is connected to only // its parent i.e. it is a leaf node if (flag == 1) System.out.print( node + " "); } // Driver code public static void main(String args[]) { // Adjacency list Vector t = new Vector(); // List of all edges pair edges[] = { new pair( 1, 2 ), new pair( 1, 3 ), new pair( 2, 4 ), new pair( 3, 5 ), new pair( 3, 6 ), new pair( 3, 7 ), new pair( 6, 8 ) }; // Count of edges int cnt = edges.length; // Number of nodes int node = cnt + 1; for(int i = 0; i < 1005; i++) { t.add(new Vector()); } // Create the tree for (int i = 0; i < cnt; i++) { ((Vector)t.get(edges[i].first)).add(edges[i].second); ((Vector)t.get(edges[i].second)).add(edges[i].first); } // Function call dfs(t, 1, 0); } } // This code is contributed by Arnab Kundu
Python3
# Python3 implementation of the approach t = [[] for i in range(1005)] # Function to perform DFS on the tree def dfs(node, parent): flag = 1 # Iterating the children of current node for ir in t[node]: # There is at least a child # of the current node if (ir != parent): flag = 0 dfs(ir, node) # Current node is connected to only # its parent i.e. it is a leaf node if (flag == 1): print(node, end = " ") # Driver code # List of all edges edges = [[ 1, 2 ], [ 1, 3 ], [ 2, 4 ], [ 3, 5 ], [ 3, 6 ], [ 3, 7 ], [ 6, 8 ]] # Count of edges cnt = len(edges) # Number of nodes node = cnt + 1 # Create the tree for i in range(cnt): t[edges[i][0]].append(edges[i][1]) t[edges[i][1]].append(edges[i][0]) # Function call dfs(1, 0) # This code is contributed by Mohit Kumar
C#
// C# implementation of the approach using System.Collections; using System.Collections.Generic; using System; class GFG{ // Pair class class pair { public int first, second; public pair(int a, int b) { first = a; second = b; } } // Function to perform DFS on the tree static void dfs(ArrayList t, int node, int parent) { int flag = 1; // Iterating the children of current node for(int i = 0; i < ((ArrayList)t[node]).Count; i++) { int ir = (int)((ArrayList)t[node])[i]; // There is at least a child // of the current node if (ir != parent) { flag = 0; dfs(t, ir, node); } } // Current node is connected to only // its parent i.e. it is a leaf node if (flag == 1) Console.Write( node + " "); } // Driver code public static void Main(string []args) { // Adjacency list ArrayList t = new ArrayList(); // List of all edges pair []edges = { new pair(1, 2), new pair(1, 3), new pair(2, 4), new pair(3, 5), new pair(3, 6), new pair(3, 7), new pair(6, 8) }; // Count of edges int cnt = edges.Length; for(int i = 0; i < 1005; i++) { t.Add(new ArrayList()); } // Create the tree for(int i = 0; i < cnt; i++) { ((ArrayList)t[edges[i].first]).Add( edges[i].second); ((ArrayList)t[edges[i].second]).Add( edges[i].first); } // Function call dfs(t, 1, 0); } } // This code is contributed by rutvik_56
Javascript
<script> // Javascript implementation of the approach // Function to perform DFS on the tree function dfs(t, node, parent) { let flag = 1; // Iterating the children of current node for(let i = 0; i < t[node].length; i++) { let ir = t[node][i]; // There is at least a child // of the current node if (ir != parent) { flag = 0; dfs(t, ir, node); } } // Current node is connected to only // its parent i.e. it is a leaf node if (flag == 1) document.write( node + " "); } // Driver code // Adjacency list let t = [] // List of all edges let edges = [ [ 1, 2 ], [ 1, 3 ], [ 2, 4 ], [ 3, 5 ], [ 3, 6 ], [ 3, 7 ], [ 6, 8 ] ]; // Count of edges let cnt = edges.length; // Number of nodes let node = cnt + 1; for(let i = 0; i < 1005; i++) { t.push([]); } // Create the tree for(let i = 0; i < cnt; i++) { t[edges[i][0]].push(edges[i][1]) t[edges[i][1]].push(edges[i][0]) } // Function call dfs(t, 1, 0); // This code is contributed by patel2127 </script>
4 5 8 7
Complejidad temporal: O(N), donde N es el número de Nodes del gráfico.
Espacio Auxiliar: O(N)
Publicación traducida automáticamente
Artículo escrito por sayantan_das24 y traducido por Barcelona Geeks. The original can be accessed here. Licence: CCBY-SA