Dada una array arr[] de N enteros positivos. La tarea es imprimir todos los pares posibles de modo que su XOR sea un número primo .
Ejemplos:
Entrada: arr[] = {1, 3, 6, 11}
Salida: (1, 3) (1, 6) (3, 6) (6, 11)
Explicación:
El XOR de los pares anteriores:
1^3 = 2
1^6 = 7
3^6 = 5
6^11 = 13
Entrada: arr[] = { 22, 58, 63, 0, 47 }
Salida: (22, 63) (58, 63) (0, 47)
Explicación:
El XOR de los pares anteriores:
22^33 = 37
58^63 = 5
0^47 = 47
Acercarse:
- Genera todos los números primos usando Sieve of Eratosthenes .
- Para todos los pares posibles de la array dada , verifique si el XOR de ese par es primo o no.
- Si el XOR de un par es primo, imprima ese par; de lo contrario, verifique el siguiente par.
A continuación se muestra la implementación del enfoque anterior:
CPP
// C++ implementation of the above approach #include <bits/stdc++.h> using namespace std; const int sz = 1e5; bool isPrime[sz + 1]; // Function for Sieve of Eratosthenes void generatePrime() { int i, j; memset(isPrime, true, sizeof(isPrime)); isPrime[0] = isPrime[1] = false; for (i = 2; i * i <= sz; i++) { // If i is prime, then make all // multiples of i false if (isPrime[i]) { for (j = i * i; j < sz; j += i) { isPrime[j] = false; } } } } // Function to print all Pairs whose // XOR is prime void Pair_of_PrimeXor(int A[], int n) { for (int i = 0; i < n; i++) { for (int j = i + 1; j < n; j++) { // if A[i]^A[j] is prime, // then print this pair if (isPrime[(A[i] ^ A[j])]) { cout << "(" << A[i] << ", " << A[j] << ") "; } } } } // Driver Code int main() { int A[] = { 1, 3, 6, 11 }; int n = sizeof(A) / sizeof(A[0]); // Generate all the prime number generatePrime(); // Function Call Pair_of_PrimeXor(A, n); return 0; }
Java
// Java implementation of the above approach class GFG { static int sz = (int) 1e5; static boolean []isPrime = new boolean[sz + 1]; // Function for Sieve of Eratosthenes static void generatePrime() { int i, j; for (i = 2; i <= sz; i++) isPrime[i] = true; for (i = 2; i * i <= sz; i++) { // If i is prime, then make all // multiples of i false if (isPrime[i]) { for (j = i * i; j < sz; j += i) { isPrime[j] = false; } } } } // Function to print all Pairs whose // XOR is prime static void Pair_of_PrimeXor(int A[], int n) { for (int i = 0; i < n; i++) { for (int j = i + 1; j < n; j++) { // if A[i]^A[j] is prime, // then print this pair if (isPrime[(A[i] ^ A[j])]) { System.out.print("(" + A[i] + ", " + A[j]+ ") "); } } } } // Driver Code public static void main(String[] args) { int A[] = { 1, 3, 6, 11 }; int n = A.length; // Generate all the prime number generatePrime(); // Function Call Pair_of_PrimeXor(A, n); } } // This code is contributed by sapnasingh4991
Python
# Python implementation of the above approach sz = 10**5 isPrime = [True]*(sz + 1) # Function for Sieve of Eratosthenes def generatePrime(): i, j = 0, 0 isPrime[0] = isPrime[1] = False for i in range(2, sz + 1): if i * i > sz: break # If i is prime, then make all # multiples of i false if (isPrime[i]): for j in range(i*i, sz, i): isPrime[j] = False # Function to print all Pairs whose # XOR is prime def Pair_of_PrimeXor(A, n): for i in range(n): for j in range(i + 1, n): # if A[i]^A[j] is prime, # then print this pair if (isPrime[(A[i] ^ A[j])]): print("(",A[i],",",A[j],")",end=" ") # Driver Code if __name__ == '__main__': A = [1, 3, 6, 11] n =len(A) # Generate all the prime number generatePrime() # Function Call Pair_of_PrimeXor(A, n) # This code is contributed by mohit kumar 29
C#
// C# implementation of the above approach using System; class GFG { static int sz = (int) 1e5; static bool []isPrime = new bool[sz + 1]; // Function for Sieve of Eratosthenes static void generatePrime() { int i, j; for (i = 2; i <= sz; i++) isPrime[i] = true; for (i = 2; i * i <= sz; i++) { // If i is prime, then make all // multiples of i false if (isPrime[i]) { for (j = i * i; j < sz; j += i) { isPrime[j] = false; } } } } // Function to print all Pairs whose // XOR is prime static void Pair_of_PrimeXor(int []A, int n) { for (int i = 0; i < n; i++) { for (int j = i + 1; j < n; j++) { // if A[i]^A[j] is prime, // then print this pair if (isPrime[(A[i] ^ A[j])]) { Console.Write("(" + A[i] + ", " + A[j]+ ") "); } } } } // Driver Code public static void Main(String[] args) { int []A = { 1, 3, 6, 11 }; int n = A.Length; // Generate all the prime number generatePrime(); // Function Call Pair_of_PrimeXor(A, n); } } // This code is contributed by Rajput-Ji
Javascript
<script> // Javascript implementation of // the above approach const sz = 100000; let isPrime = new Array(sz + 1).fill(true); // Function for Sieve of Eratosthenes function generatePrime() { let i, j; isPrime[0] = isPrime[1] = false; for (i = 2; i * i <= sz; i++) { // If i is prime, then make all // multiples of i false if (isPrime[i]) { for (j = i * i; j < sz; j += i) { isPrime[j] = false; } } } } // Function to print all Pairs whose // XOR is prime function Pair_of_PrimeXor(A, n) { for (let i = 0; i < n; i++) { for (let j = i + 1; j < n; j++) { // if A[i]^A[j] is prime, // then print this pair if (isPrime[(A[i] ^ A[j])]) { document.write("(" + A[i] + ", " + A[j] + ") "); } } } } // Driver Code let A = [ 1, 3, 6, 11 ]; let n = A.length; // Generate all the prime number generatePrime(); // Function Call Pair_of_PrimeXor(A, n); </script>
Producción:
(1, 3) (1, 6) (3, 6) (6, 11)
Complejidad de tiempo: O(N 2 ), donde N es la longitud de la array dada.
Espacio Auxiliar: O(sz)